ARMO9E-S

(Rev 1)

Technical Reference Manual

ARM

Copyright © 1999, 2000 ARM Limited. All rights reserved.
ARM DDI 0165B

ARMO9E-S

Technical Reference Manual
Copyright © 1999, 2000 ARM Limited. All rights reserved.
Release Information

Change history

Date Issue Change
16th December 1999 A First release.
12th September 2000 B Second release.

Proprietary Notice
ARM, The ARM Powered logo, Thumb, and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, Embedded| CE, M odel Gen, Multi-ICE, PrimeCell,
ARM7TDMI,ARM7TDMI-S,ARM9TDMI, ARM9E-S, ARM946E-S, ARM966E-S, ETM7,ETM9, TDMI,
and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document
may be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties of
merchantability, or fitness for purpose, are excluded.

Thisdocument isintended only to assist the reader in the use of the product. ARM Limited shall not beliable
for any loss or damage arising from the use of any information in this document, or any error or omissionin
such information, or any incorrect use of the product.

Figure C-2 on page C-4 reprinted with permission |EEE Std 1149.1-1990, | EEE Standard Test Access Port
and Boundary-Scan Architecture Copyright 2000, by IEEE. The |EEE disclaims any responsibility or
liability resulting from the placement and use in the described manner.

Confidentiality Status

This document is Open Access. This document has no restriction on distribution.
Product Status

The information in this document isfinal (information on a developed product).
Web Address

http://ww. arm com

Copyright © 1999, 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Contents
ARMOE-S Technical Reference Manual

Preface
ADOUL thiS dOCUMENTeoiiiiiii it XVi
FUINEr rEadING ..oooeeei et XiX
FEEADACKiiieiii et XX
Chapter 1 Introduction
11 ADOUL the ARMOE-S ..ot
1.2 ARMOE-S architeCtUreccooviiiiiiiiiieiiie e
1.3 ARMOE-S block, core, and interface diagrams
14 ARMOE-S insStruction St SUMMAIYccceiiiiieiiiiieiiiiee e
Chapter 2 Programmer’s Model
2.1 About the programmer’s MOdelcccoviiiiiiiiiiniiie e 2-2
2.2 Processor operating Statescceeeiieeie it 2-3
2.3 Memory formats
2.4 Instruction length
2.5 (D= £ T 1 0= 2 ST
2.6 OPErating MOUESueiiiiiiiie ettt seie e e e e ebneeeennes
2.7 Registersoocvvvvveiiiiiiiiieee,
2.8 The program status registers
29 o= o) 1o O ERER.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. iii

Contents

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Device Reset

3.1 ADOUL DEVICE FESEL ...eeiiiiiieiieie ettt 3-2
3.2 Reset modes e 3-3
33 ARMOE-S behavior on exit from resetcccoovveiiiiiieniiene e 3-5
Memory Interface

4.1 About the Memory INtErface ... e 4-2
4.2 INSErUCLION INLEITACE ...cciieiiiiiiie e 4-3
4.3 Instruction interface addressing SIgNaAlScccceeeeeviiiiiinee e 4-4
4.4 Instruction interface data timed signals

4.5 Endian effects for instruction fetChesccoccciiiiiiin e

4.6 Instruction interface CYCle tyPeS ...oovovvvciiiiiee e

4.7 Data interfaceccccccviveeiniiieennn.

4.8 Data interface addressing signals

4.9 Data interface data timed signals

4.10 Data interface CYCle tYPES ...cccvvieiiiie e

4.11 Endian effects for data transfersccccoiiiiiiiiii e,

4.12 Use of CLKEN to control buS CYCIEScoevviiiiiiiieiieee e
Interrupts

5.1 ADOUL INEEITUPLS ..ottt e e ie e e e eaee

5.2 Hardware interface

53 Maximum interrupt latency

5.4 Minimum INtEITUPL [ALENCY ...oeeeeeeeeee e 5-8

ARMO9E-S Coprocessor Interface

6.1 About the coprocessor INLEIfaCeccceeeiiiiiiiiiie e 6-2
6.2 LDC/STC .ot

6.3 MCR/MRC

6.4 MCRR/MRRC

6.5 INtErloCKed MCRoiiiiiiiiee e e

6.6 Interlocked MCRR .
6.7 [0 5] N

6.8 Privileged iNSTIUCHIONSvviiiiiieiiiie e
6.9 Busy-waiting and interrupts
6.10 Coprocessor 15 MCRs
6.11 CONNECHING COPIrOCESSOIS ...eeiiiiiieeitieeaitrieeeieee et eeasibe e e s seeeeasbeeeesnbeeeseanes

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 7

Chapter 8

Chapter 9

Contents

Debug Interface and EmbeddedICE-RT
7.1 About the debug interface
7.2 Debug systems
7.3 About EmbeddedICE-RT

7.4 Disabling EmbeddedICE-RToooiiiiiie e
7.5 Debug interface signals

7.6 ARMOE-S core clock domains

7.7 Determining the core and system state ..

7.8 The debug communications channelccccccvveiiiiiiiiee e,
7.9 Monitor MOde debUQcoovuiiiiiiiiee e

Instruction Cycle Times

8.1 INstruction cycle COUNt SUMMAIYoviiiiiiiiiiiiiiiie e e eeeee e e e
8.2 Introduction to detailed instruction cycle timings

8.3 Branch and ARM branch with linkcc..coce.

8.4 Thumb branch with iNK ...
8.5 Branch and eXChangeooooiiiiiiiie e
8.6 Thumb Branch, Link, and Exchange <immediate>

8.7 Data OPEIAtIONSvviiiiiiiietie ettt
8.8 MRS e
8.9 MSR 0perationscccoceeeeviveeeriiieesnnen.

8.10 Multiply and multiply accumulate

8.11 QADD, QDADD, QSUB, and QDSUB

8.12 (0= To [(=T 0 1S3 =] SRR
8.13) (o1 (= (=T 115 (=] RS

8.14 Load multiple registers
8.15 Store MUItIPIE rEQISLEISvviiiiiiei i
8.16 Load double register
8.17 Store double register
8.18 Data swap
8.19 PLD ettt
8.20 Software interrupt, undefined instruction, and exception entry
8.21 Coprocessor data processing operation
8.22 Load coprocessor register (from memory)
8.23 Store coprocessor register (to memory)
8.24 Coprocessor register transfer (to ARM)

8.25 Coprocessor register transfer (from ARM)
8.26 Double coprocessor register transfer (to ARM)
8.27 Double coprocessor register transfer (from ARM) ...
8.28 (O] o] o Tot=TT S0] =1 o ST o | A
8.29 Unexecuted INSIIUCHIONSc.viiiiiiiie it eie e

AC Parameters
9.1 BT 11 o T L=V = 0 PSSP 9-2
9.2 AC timing parameter definitioNSccocieiiiiie i 9-8

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. v

Contents

Appendix A Signal Descriptions

Al Clock interface SIgNaIScocviiiiiiiiiie e
A.2 Instruction memory interface signals .
A3 Data memory interface Signalsccccccceeviiieiiiiieee e
A4 Miscellaneous SIGNAIScoiiiuiiiiiiiieiie e
A5 Coprocessor interface signals .
A.6 DEDUQG SIGNAIS ..t

Appendix B Differences Between the ARM9E-S and the ARM9TDMI

B.1 INterface SIGNAISoooiiiiiiiii e e
B.2 ATPG SCaN INTEITACEeeviiiiiii it
B.3 TiMING PArAMELEIS ...ieiiiiee e et e e e e s e e e e e s e e e e e enenreaeeeessnnnees
B.4 ARMOE-S design considerations

B.5 ARMO9E-S debugger considerations

Appendix C Debug in depth

(o} Scan chains and JTAG iNterfaceoocuviiiiiiiiiiee e C-2
Cc.2 Resetting the TAP CONrollercooiiiiiiiiiiiie e C-5
C.3 Instruction register

C.A4 Public instructions
C5 Test data registers
C.6 ARMOE-S core clock domains

Cc7 Determining the core and system state

C.8 Behavior of the program counter during debugccccoovviiviiveeecicciiennn. C-24
c.9 Priorities and exceptions

C.10 EmbeddedICE-RT logic

C.11 VeCtOr CAtCRING ..oeviiiiiiiiiiee e

C.12 Single-steppingccvevvveeviiiiiiieeeieeeen
C.13 Coupling breakpoints and watchpoints
C.14 Disabling EmbeddedICE-RT
C.15 EmbeddedICE-RT tiMINGvveiiiie et seee st

Vi Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

List of Tables
ARMOE-S Technical Reference Manual

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 1-12
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 3-1
Table 4-1
Table 4-2
Table 4-3
Table 4-4

(G} (01 = Lo][
ARM instruction set summary
Addressing mode 2ccccoeeeiiiiiiiieninenn.
Addressing mode 2 (privileged)
Addressing MOUE 3viiiiieeeiiiiiiie e e e e e e e e
Addressing mode 4 (load)
Addressing mode 4 (store)
Addressing mode 5 (load)
(0] 0] 1 2o 122 USRS
Fieldscccoovivieinnn.

Condition fields
Thumb instruction set summary ...

Register mode identifiers ...

PSR mode bit ValUEScooiiiiiiiiieie e

Exception entry and eXitccccovvueiiiiiiiniiiie e

Configuration of exception vector address locations 2-26
EXCEPLION VECLOIScceeiiiiiiiee et e s e e ieee e s enenaan e e e 2-26
Reset modes 3-3
Transfer widths 4-4
INTRANS encoding 4-5
Significant address bitSoovvveiiiiiiiiee e 4-7
32-bit instruction fetChes ... 4-7

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. vii

Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 4-15
Table 4-16
Table 6-1
Table 6-2
Table 7-1
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table 8-10
Table 8-11
Table 8-12
Table 8-13
Table 8-14
Table 8-15
Table 8-16
Table 8-17
Table 8-18
Table 8-19
Table 8-20
Table 8-21
Table 8-22
Table 8-23
Table 8-24
Table 8-25
Table 8-26
Table 8-27
Table 8-28
Table 8-29
Table 8-30
Table 8-31
Table 8-32

HalfWOrd ACCESSESiiiiiiiiiiiiee et
CYCIE tYPES it
BUISTLYPES oottt

Transfer widths
DnTRANS encoding

Transfer size encoding
Significant address bitSccccoeiiiiiiiiiii
WOTT BCCESSES ...uvviiiiiiiee ittt ettt et e e e e e e e sibee e
Halfword accesses
BYLE ACCESSES ..o
(037 od [Y/ o 1= USSR
Burst types
Handshake signals
Handshake signal connections .
Coprocessor 14 regisSter MaPcccevvveeerriveeerieeeanireessieessneeeens

KEY t0 tabIES .. .veiiiiii e e
ARM instruction cycle counts
Key to cycle timing tables ...
Branch and ARM branch with link cycle timings
Thumb branch with link cycle timing
Branch and exchange cycle timing
Thumb branch, link and exchange cycle timing
Data operation Cycle timiNgccovvverieerieeiie e
MRS CyCle tiIMINGoooiiiiiiiiiie e
MSR cycle timing
MUL and MLA cycle timing
MULS and MLAS cycle timingcccceeieieenniieenieie e
SMULL, UMULL, SMLAL, and UMLAL cycle timing
SMULLS, UMULLS, SMLALS, and UMLALS cycle timing
SMULxy, SMLAxy, SMULWYy, and SMLAWY cycle timing
SMLALXY CYClE tIMING ...vvviiiiiieiiiiee e
QADD, QDADD, QSUB, and QDSUB cycle timingccc......
Load register operation cycle timing
Cycle timing for load operations resulting in interlocks
Example sequence LDRB, NOP and ADD cycle timing
Example sequence LDRB and STMIA cycle timingc.......
Store register operation cycle timing
LDM cycle timingcccoevvveeeninieninnn.

STM CYClE tIMING ..eiiiiiieiiiie e
Data swap Cycle timingcc.veeeeeiiiiiiiieee e
PLD operation cycle timing ...
Exception entry Cycle timingcooccviieeeeniiiiiiiiee s
Coprocessor data operation cycle timingcccccccceevieeeiiinennns
Load coprocessor register cycle timing
Store coprocessor register cycle timing
MRC instruction cycle timingc.cccecvvevveenne.

MCR instruction cycle timingc.cccceeviiie i

viii

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Table 8-33
Table 8-34
Table 8-35
Table 8-36
Table 9-1
Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table B-1
Table C-1
Table C-2
Table C-3
Table C-4
Table C-5
Table C-6
Table C-7
Table C-8
Table C-9

MRRC instruction cycle timing
MCRR instruction cycle timing
Coprocessor absent instruction cycle timing
Unexecuted instruction cycle timingcccecveeeenee. .
Target AC timing Parametersccocvevveiieenveniiee e
Clock interface SignalSc.eooiiieiiiiiieiiee e
Instruction memory interface signalscccocoeveiiiiiiiee e
Data memory interface signalsccccoiiiie e
Miscellaneous signalscc..cccuee...

Coprocessor interface signals .
DebUg SIGNAISveeiiiei e
ARMOIE-S signals and ARM9TDMI hard macrocell equivalents ... B-2
PUDIIC INSIIUCHIONS ...
Scan chain number allocation
Scan chain 1 bit ordercccoocvvviiiiieinie e,
ARMO9E-S EmbeddedICE-RT logic register map

Watchpoint control register for data comparison functions C-31
Watchpoint control register for instruction comparison functions C-33
Debug control register bit functionsccoceviiiiiiiniiinnn, C-34
Interrupt signal CoNtrolccooiviiiiiiiiiee e C-35
Debug status register bit functionscceoeveiiiiniiiniiciee C-36

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. ix

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

List of Figures
ARMOE-S Technical Reference Manual

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11

Five-stage Pipelinecoocveeiee e
The instruction pipeline

ARMOE-S block diagramcccccveriiiiiiiiiiie e
ARMOE-S €Ore didgramcccccevuveeriiiieeiiiieesieeesnieeesneeeesneee e
ARMOE-S interface diagramccccocceevvienernceenen.

Big-endian addresses of bytes within words

Little-endian addresses of bytes within words

Register organization in ARM stateccccceevvvvvieeeeevviiiineeeens
Register organization in Thumb statecccccceviiiiiiiiieiiinnn.
Mapping of Thumb state registers onto ARM state registers 2-14
Program Status regISLENcoceeriueeiieiiieniee e
POWET-0N TESEL ...ttt e
ARMOE-S behavior on exit from reset

Simple memory cyclecccccovviveiiieennnne

Nonsequential instruction fetch cycle

Sequential instruction fetch cycles

Merged [-S CYCIEouiiiiiiii e
ARM9TDMI effect of DABORT on following memory access 4-19
ARMOE-S aborted data memory acCessccccceevvvveervveeanennen 4-20
Data repliCationcccoiiiiiiiiiiie e
Simple memory cycle

Nonsequential data Memory CyCleccocveeriiiieiiiiieiiiieceieen 4-26
Back to back memory CycClesccccoveciiiiiei i 4-27
Sequential aCCESS CYCIESoovviiiiiiiee e 4-28

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. Xi

Figure 4-12
Figure 4-13
Figure 5-1
Figure 5-2
Figure 5-3
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 7-9
Figure 9-1
Figure 9-2
Figure 9-3
Figure 9-4
Figure 9-5
Figure 9-6
Figure 9-7
Figure 9-8
Figure 9-9
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure C-6
Figure C-7
Figure C-8
Figure C-9
Figure C-10
Figure C-11
Figure C-12
Figure C-13

USE Of CLKEN ...ttt e
Alteration of next memory request during waited bus cycle
Retaking the FIQ eXCeptioncoccuvviiiiiiiniii e
Stopping CLK for power savingcccoceeveerveennnn.
Using CLK and CLKEN for best interrupt latency
ARMOE-S LDC/STC cycle timingccccocoveeeivieenns
ARMBOE-S coprocessor Clockingccocceeeiiieieiiieeeniiee e
ARMOE-S MCR or MRC transfer timingccccceeoveveriienieenns
ARMO9E-S MCRR or MRRC transfer timing
ARMOE-S interlocked MCRcccooiuiiiiiiieiceree e
ARMOE-S interlocked MCRRcoocoiiiiiiiiniiieeriiie e
ARMOE-S late-canceled CDP
ARMOE-S privileged instructions
ARMOE-S busy waiting and interrupts
ARMOE-S coprocessor 15 MCRSccccocvviiiiiiiiiiiciiee e
COProCesSOr CONNECHIONScccviiriiiiiieiieeir et
Typical debug system
ARMBOE-S block diagram
The ARMO9E-S, TAP controller, and EmbeddedICE-RT
Breakpoint timiNgoovveiiiiiiieiece e
Watchpoint entry with data processing instruction
Watchpoint entry with branchccccocciiiis

Clock SyNChronizationcooocuveeiiiieeniiie e
Debug comms channel control registerc.coevvevieinveennene
Coprocessor 14 monitor mode debug status register format 7-18
Instruction memory interface timingccccccceevveviieee e 9-2
Data memory interface timing
Clock enable timing
Coprocessor interface timing
Exception and configuration timing
Debug interface timingcccoocviiiiiiienii e
Interrupt sensitivity status timingcccceevviiee e,
JTAG interface timingcccceeevvvveriniennns

DBGSDOUT to DBGTDO relationship
ARMOE-S scan chain arrangementsccccceveeerieercenieeecneenen
Test access port controller state transitions
ID code register format
Typical scan chain cell
Debug eXit SEQUENCEccueiiiiiiieiiiie e
Debug State ENMIYeeeeeeeeciiie e
ARMOE-S EmbeddedICE macrocell overview
Watchpoint control register for data comparison
Watchpoint control register for instruction comparison C-32
Debug control register format
Debug status register
Debug control and status register structureccccceeveiveennnne
VeCtor CatCh registeroccvve i e C-38

Xii

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Preface

This preface introduces the ARM9E-S and its reference documentation. It containsthe
following sections:

. About this document on page xiv
. Further reading on page xvii
. Feedback on page xuviii.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. Xiii

Preface

About this document

Intended audience

Using this manual

This document is the technical reference manual for the ARM9E-S.

This document has been written for hardware and software engineers who want to
design or devel op products based upon the ARM9E-S family of processors. It assumes
no prior knowledge of ARM products.

This document is organized into the following chapters:

Chapter 1 Introduction
Read this chapter for an introduction to the ARM9E-S, and for a
summary of the ARM9E-S instruction set.
Chapter 2 Programmer’s Model
Read this chapter for a description of the programmer’s model for the
ARMOE-S.
Chapter Device Reset
Read this chapter for a description of the reset behavior of the ARM9E-S.

Chapter 4Memory Interface
Read this chapter for a description of the memory interface, including
descriptions of the instruction and data interfaces.
Chapter Snterrupts
Read this chapter for a description of interrupt operation. The chapter
includes interrupt latency details.
Chapter 8Coprocessor Interface
Read this chapter for a description of the coprocessor interface. The
chapter includes timing diagrams for coprocessor operations.
Chapter Debug Interface and Embedded! CE-RT

Read this chapter for an overview of the debug interface and the
EmbeddedICE-RT logic.

Xiv

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Preface

Chapter 8 Instruction Cycle Times
Read this chapter for a summary of instruction cycle timings and a
description of interlocks.

Chapter 9 AC Parameters
Read this chapter for a description of the AC timing parameters of the
ARMOE-S.

Appendix A Signal Descriptions
Read this chapter for adescription of all the ARM9E-S interface signals.

Appendix B Differences
Read this chapter for a description of the differences between the
ARMOE-S and the ARMIOTDMI hard macrocell interface.
Appendix C Debug in depth
Read this chapter for a detailed description of the debug interface.

Typographical conventions

The following typographical conventions are used in this book:

bold Highlights ARM processor signal names, and interface elements, such as
menu names and buttons. Also used for termsin descriptive lists, where
appropriate.

italic Highlights specia terminology, cross-references, and citations.

typew i t er Denotestext that can be entered at the keyboard, such as commands, file
and program names, and source code.

typew i t er Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or option
name.

typewiter italic
Denotes arguments to commands or functions, where the argument isto
be replaced by a specific value.

typewiter bold
Denotes language keywords when used outside example code.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. XV

Preface

Timing diagram conventions

This manual contains a number of timing diagrams. The following key explains the
componentsused in these diagrams. Any variations are clearly labeled when they occur.
Therefore, you must not attach any additional meaning unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance
Bus change

High impedance to stable bus

Valid (correct) sampling point

NN

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

XVi Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Further reading

ARM publications

Other publications

Preface

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact i nf o@r m comor visit our web site at
http://ww. arm com

This document contains information that is specific to the ARMOE-S. Refer to the
following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100)
. ARMY9TDMI Data Sheet (ARM DDI 0029)
. ARM Software Development Kit User Guide (ARM DUI 0040).

This section lists relevant documents published by third parties.

. IEEE Std. 1149.1- 199@&andard Test Access Port and Boundary-Scan
Architecture.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. XVii

Preface

Feedback
ARM Limited welcomes feedback both on the ARM9E-S, and on the documentation.

Feedback on the ARM9E-S

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments.

Feedback on the ARM9E-S Technical Reference Manual

If you have any comments about this document, please send email to
errata@rm comgiving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

xviii Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 1
Introduction

This chapter introduces the ARM9E-S. It contains the following sections:

About the ARM9E-Son page 1-2

ARMOE-S architecture on page 1-5

ARMOE-S block, core, and interface diagrams on page 1-7
ARMOE-Sinstruction set summary on page 1-10.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 1-1

Introduction

1.1 About the ARM9E-S

The ARM9E-S is amember of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption and gate count.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The reduced instruction set and rel ated decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. Thissimplicity gives:

. a high instruction throughput
. an excellent real-time interrupt response
. a small, cost-effective, processor macrocell.

The ARM9E-S supports the ARMV5TE architecture and features an enhanced
multiplier design for improved DSP performance.

The ARM9E-S supports the ARM debug architecture and features support for real-time
debug, which allows critical exception handlers to execute while debugging the system.

1.1.1 Theinstruction pipeline

The ARM9E-S uses a pipeline to increase the speed of the flow of instructions to the

processor. This allows several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A five-stage pipeline is used, consisting of Fetch, Decode, Execute, Memory, and
Writeback stages. This is shown in Figure 1-1 on page 1-3.

1-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

ARM Thumb

PC PC Fetch Instruction fetched from memory
A 4
Decoding of registers used in instruction
PC-4 PC-2 Decode
Register read
A 4
PC-8 PC-4 Execute Shift and ALU operation
A 4
PC-12 PC-6 Memory Data access to/from memory
A
PC-16 PC-8 Writeback Write registers back to register bank
Figure 1-1 Five-stage pipeline
Note

Theprogram counter pointsto theinstruction being fetched rather than to theinstruction
being executed.

During normal operation:

. one instruction is being fetched from memory

. the previous instruction is being decoded

. the instruction before that is being executed

. the instruction before that is performing data accesses (if applicable)
. the instruction before that is writing its data back to the register bank.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 1-3

Introduction

11.2

1.1.3

CLK

IA[31:1], INMREQ,
ISEQ

INSTR[31:0] [j

DA[31:0], DnMREQ,

DSEQ, DMORE \’X X
WDATA[31:0] X X
RDATA[31:0] Ej

Typical pipeline operation is shown in Figure 1-2.

F D E M W
Instruction RegisterRegister| o\ .o ALU Data Register
memory access decode read ! memory access write
First Second

multiply cycle | multiply cycle

4LW\ \ \ \\ \ \ L

Figure 1-2 The instruction pipeline

Memory access

The ARMO9E-S has a Harvard architecture. This features separate address and data
buses for both the 32-bit instruction interface and the 32-bit datainterface. This
achieves a significant decrease in Cycles Per Instruction (CPI) by allowing instruction
and data accesses to run concurrently.

Only load, store, coprocessor |oad, coprocessor store, and swap instructions can access
data from memory. Data can be 8-bit bytes, 16-bit halfwords or 32-bit words. Words
must be aligned to 4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

Forwarding, interlocking and data dependencies

Due to the nature of the five-stage pipeline, it is possible for avalue to be required for
use beforeit has been placed in the register bank by the actions of an earlier instruction.
The ARMO9E-S control logic automatically detects these cases and stalls the core or
forwards data as applicable to overcome these hazards. No intervention is required by
software in these cases, although you can improve software performance by re-ordering
instructionsin certain situations.

1-4

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

1.2 ARMO9E-S architecture

The ARMOE-S processor has two instruction sets:
. the 32-bit ARM instruction set used in ARM state
. the 16-bit Thumb instruction set used in Thumb state.

The ARM9E-S is an implementation of the ARMV5TE architecture. For details of both
the ARM and Thumb instruction sets, refer toARM Architecture Reference Manual.
For full details of the ARM9E-S instruction set, contact ARMw&k. ar m com

1.2.1 Instruction compression

A typical 32-bit architecture can manipulate 32-bit integers with single instructions, and
address a large address space much more efficiently than a 16-bit architecture. Wher
processing 32-bit data, a 16-bit architecture takes at least two instructions to perform
the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has
only 32-bit instructions, overall the 16-bit architecture has higher code density, and
greater than half the performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher
performance than on a 16-bit architecture, with higher code density than a 32-bit
architecture.

The ARM9E-S gives you the choice of running in ARM state, or Thumb state, or a mix
of the two. This allows you to optimize both code density and performance to best suit
your application requirements.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bi
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, allowing excellent
interoperability between ARM and Thumb states.

Thumb has all the advantages of a 32-bit core:
. 32-bit address space

. 32-bit registers

. 32-bit shifter andArithmetic Logic Unit (ALU)
. 32-bit memory transfer.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 1-5

Introduction

Thumb therefore offersalong branch range, powerful arithmetic operations, and alarge
address space.

Thumb code istypically 65% of the size of the ARM code, and provides 160% of the
performance of ARM code when running on a processor connected to a 16-bit memory
system. Thumb, therefore, makes the ARM9E-S ideally suited to embedded
applications with restricted memory bandwidth, where code density isimportant.

Theavailability of both 16-bit Thumb and 32-bit ARM instruction sets, gives designers
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such asfast interrupts and DSP a gorithms can be coded using the full ARM instruction
set, and linked with Thumb code.

1-6

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

1.3 ARMO9E-S block, core, and interface diagrams

The ARMOE-S architecture, core, and interface diagrams are shown in the following
figures:

. the ARM9OE-Sblock diagram is shown in Figure 1-3

. the ARMOE-S core diagram is shown in Figure 1-4 on page 1-8

. the ARMOE-Sinterface diagram is shown in Figure 1-5 on page 1-9.

Scan chain 2

_ ARMYE-S
DBGRNG[1:0] €——— £ 0 44edICE-RT

DBGEXT[1:0] — logic

L/ PANPANPVANVAN
DLOCK, DnRW, DMASI[1:0] <:T —

DnTRANS, DnMREQ, DSEQ
DA[31:0]

Coprocessor
A ARMOE-S interface
core signals

Scan chain 1
\4

ARMO9E-S
TAP controller

|

Data bus

WDATA[31:0]

RDATA[31:0]

InNMREQ, ISEQ,
ITBIT, INTRANS

IA[31:0]

01

|

INSTR[31:0]

A A A A

DBGTCKEN
DBGTMS
DBGnTRST
DBGTDI
DBGTDO

A

Figure 1-3 ARM9E-S block diagram

Refer to Chapter Debug Interface and Embedded| CE-RT for a description of the
EmbeddedICE-RT logic.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 1-7

Introduction

IA[31:1] INSTR[31:0]
IAScan IDScan
=
Incrementer
/_ |Areg Instruction

U — ﬂ. T I pipeline

Exception ResultMe[31:0] DIN[31:0]
ectors F
v 1 E 1 Instruction
| decode
. d
Register bank plus an
PSR data path
program counter Byte rotate/
9 sign extend Cf::r;ifl
PSR 1: P
S l [31:0] A[31:0] Imm| | B[31:0] C[31:0]
[H —|| [DINFWDI[31:0]
'i S iL/ \#&ggé'u/ \lL 1L /
Amux Bmux Cmux
ADatal..] Multiplier BDatal..]
4L]
T ACC Byte/
word
repl.
MulResultMe[31:0]
| SAT | |SAT(x2) | Shifter |
CcLz
<L ALU 4L | |
 — i /
: Ll
ALUOUtEX[31:0] . L
DINC
DAreg = DDScan
—
DAScan
DA[31:0] WDATA[31:0] RDATA[31:0]

Figure 1-4 ARM9E-S core diagram

1-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Clock

Interrupts

Miscellaneous
configuration

Instruction
memory
interface

Debug

CLK

CLKEN

>
-
-
-
T

__ CORECLKENOU

D CORECLKENIN

Y

nIRQ

nFIQ

nRESET

Yyvy

CFGHIVECS

CFGDISLTBIT

CFGBIGEND

Yyvy

1A[31:1]

1

INSTR[31:0]
IABORT

INMREQ

A

ISEQ

ITBIT

INTRANS

A A A

InM[4:0]

|

DBGIEBKPT

DBGDEWPT

EDBGRQ

Yyvy

DBGACK

" DBGEXT[1:0]
DBGEN

DBGRNG[1:0]
DBGCOMMRX

A

DBGCOMMTX

DBGRQI

DBGINSTREXEC

DBGINSTRVALID

A A A A

ARMOYE-S

i

TAPID[31:0]
‘m]
~_ DBGSDOUT

~ DBGSDIN

DBGSCREGmmf'

DBGNTDOEN
DBGIR[3:0]
DBGTCKEN
DBGTMS
DBGTDI

~ DBGNTRST
 DBGTDO

A A A

\

DA[31:0] >
[WDATA[31:0] _ >

RDATA[31:0]

_ DABORT

~ DnRW
DMAS[1:0]
DnTRANS[1:0]
DnM[4:0]
DnMREQ
DSEQ
DMORE
DLOCK

YvyYyyvyy

PASS
LATECANCEL
CHSD[1:0]
CHSE[1:0]

Yy

Introduction

EmbeddedICE

and scan
interface

Data
memory
interface

Coprocessor
interface

Figure 1-5 ARM9E-S interface diagram

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

1-9

Introduction

1.4 ARMOE-S instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction set summary on page 1-12
. Thumb instruction set summary on page 1-21.

A key to the instruction set tables is given in Table 1-1.

The ARMOE-S is an implementation of the ARMV5TE architecture. For a description
of both instruction sets, refer to tABM Architecture Reference Manual. Contact ARM
for complete descriptions of both instruction sets.

Table 1-1 Key to tables

Symbol

Description

{cond}

See Table 1-11 on page 1-20.

<Oprnd2>

See Table 1-9 on page 1-19.

{field}

See Table 1-10 on page 1-20.

S

Sets condition codes (optional).

Byte operation (optional).

Halfword operation (optional).

B
H
T

Forces DNTRANS to be active (0). Cannot be used with pre-indexed
addresses.

<a_mode2>

See Table 1-3 on page 1-16.

<a_mode2P>

See Table 1-4 on page 1-17.

<a_mode3>

See Table 1-5 on page 1-18.

<a_modedL >

See Table 1-6 on page 1-18.

<a_mode4S>

See Table 1-7 on page 1-18.

<a_mode5>

See Table 1-8 on page 1-19.

#32bit_Imm

A 32-bit constant, formed by right-rotating an 8-bit value by an even
number of bits.

1-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

Table 1-1 Key to tables (continued)

Symbol Description
<reglist> A comma-separated list of registers, enclosed in braces ({ and }).
X Selects HIGH or LOW 16 bits of register Rm. T selects the HIGH 16 bits.

(T =top) B selectsthe LOW 16 hits. (B = bottom).

y Selects HIGH or LOW 16 hits of register Rs. T selects the HIGH 16 bits.
(T =top) B selectsthe LOW 16 hits. (B = bottom).

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 1-11

Introduction

1.4.1 ARMinstruction set summary

The ARM instruction set summary is givenin Table 1-2.

Table 1-2 ARM instruction set summary

Operation Assembler

Move Move MMV{cond}{S} Rd, <Oprnd2>
Move NOT MN{ cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{ cond} Rd, SPSR
Move CPSR to register MRS{cond} Rd, CPSR
Move register to SPSR MSR{ cond} SPSR{field}, Rm
Move register to CPSR MSR{ cond} CPSR{field}, Rm
Move immediate to SPSR flags MSR{ cond} SPSR flg, #32bit_lnmm
Move immediate to CPSR flags MBR{ cond} CPSR flg, #32bit_lmm

Arithmetic Add ADD{ cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{cond}{S} Rd, Rn, <Oprnd2>
Subtract SuUB{cond}{S} Rd, Rn, <Cprnd2>
Subtract with carry SBC{cond}{S} Rd, Rn, <Cprnd2>
Reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>
Reverse subtract with carry RSC{cond}{S} Rd, Rn, <Qprnd2>
Multiply MJL{cond}{S} Rd, Rm Rs
Multiply accumulate M.A{cond}{S} Rd, Rm Rs, Rn
Multiply unsigned long UMULL{cond}{S} RdLo, RdH , Rm Rs
Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdH , Rm Rs
Multiply signed long SMULL{cond}{S} RdLo, RdH , Rm Rs
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdH , Rm Rs
Compare CWP{cond} Rd, <QOprnd2>
Compare negative CMN{cond} Rd, <Oprnd2>
Saturating add QADD{cond} Rd, Rn, Rs

1-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
Saturating add with double Q@ADD{ cond} Rd, Rn, Rs
Saturating subtract @SUB{cond} Rd, Rn, Rs
Saturating subtract with double Q@SUB{cond} Rd, Rn, Rs
Multiply 16x16 SMULxy{cond} Rd, Rm Rs
Multiply accumulate 16x16+32 SMULAxy{cond} Rd, Rm Rs, Rn
Multiply 32x16 SMULW{cond} Rd, Rm Rs
Multiply accumulate 32x16+32 SMLAW{cond} Rd, Rm Rs, Rn
Multiply signed accumulate long SMLALx{cond} RdLo, RdH , Rm Rs
16x16+64
Count |leading zeros CLZ{cond} Rd, Rm

Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ cond} Rn, <Qprnd2>
AND AND{ cond}{S} Rd, Rn, <Oprnd2>
XOR EOR{cond}{S} Rd, Rn, <Oprnd2>
OR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear Bl {cond}{S} Rd, Rn, <Oprnd2>

Branch Branch B{ cond} | abel
Branch with link BL{cond} | abel
Branch and exchange BX{cond} Rn
Branch, link and exchange BLX{ cond} | abel
Branch, link and exchange BLX{ cond} Rn

L oad Word LDR{ cond} Rd, <a_node2>

Word with User mode privilege

LDR{cond} T Rd, <a_node2P>

Byte

LDR{cond} B Rd, <a_node2>

Byte with User mode privilege

LDR{ cond} BT Rd, <a_node2P>

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 1-13

Introduction

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
Byte signed LDR{ cond} SB Rd, <a_npde3>
Halfword LDR{ cond} H Rd, <a_npde3>
Halfword signed LDR{ cond} SH Rd, <a_npde3>
Multiple block Stack operations LDM cond} <a_node4lL> Rd{!}, <reglist>

data operations

Increment before

LDM cond} 1B Rd{!}, <reglist>{"}

Increment after

LDM cond} | A Rd{!}, <reglist>{"}

Decrement before

LDM cond} DB Rd{!}, <reglist>{"}

Decrement after

LDM cond} DA Rd{!}, <reglist>{"}

Stack operations and restore CPSR LDM cond} <a_node4lL> Rd{!}, <reglist+pc>"
User registers LDM cond} <a_node4lL> Rd{!}, <reglist>"
Load double LDR{ cond} D Rd, <a_npde3>
Store Word STR{cond} Rd, <a_npde2>
Word with User mode privilege STR{cond} T Rd, <a_nopde2P>
Byte STR{cond}B Rd, <a_npde2>
Byte with User mode privilege STR{cond} BT Rd, <a_npde2P>
Halfword STR{cond}H Rd, <a_npde3>
Multiple block Stack operations STM cond} <a_node4S> Rd{!}, <reglist>

data operations

Increment before

STMcond} I B Rd{!}, <reglist>{"}

Increment after

STM cond} 1 A Rd{!'}, <reglist>{"}

Decrement before

STM cond} DB Rd{!}, <reglist>{"}

Decrement after

STM cond} DA Rd{!'}, <reglist>{"}

User registers STM cond} <a_node4S> Rd{!}, <reglist>"
Store double STR{cond}D Rd, <a_npnde3>
Cache hint Prefetch DCache line PLD <a_nopde2>
1-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
Swap Word SWP{cond} Rd, Rm [Rn]
Byte SWP{cond}B Rd, Rm [Rn]
Coprocessors Data operations CDP{cond} p<cpnunp, <opl>, CRd, CRn,
CRm <op2>
Moveto ARM reg from coproc MR{ cond} p<cpnunk, <opl>, Rd, CRn, CRm
<op2>
Move to coproc from ARM reg MCR{ cond} p<cpnun®, <opl> Rd, CRn, CRm
<op2>
Move double to ARM reg from MRRC{ cond} p<cpnume, <opl>, Rd, Rn, CRm
coproc
Move double to coproc from ARM MCRR{ cond} p<cpnum®, <opl>, Rd, Rn, CRm
reg
Load LD cond} p<cpnune, CRd, <a_npde5>
Store STC¢{ cond} p<cpnune, CRd, <a_node5>
Software SW{cond} 24bit_Imm
interrupt
Software BKPT<i mmedi at e>
breakpoint

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 1-15

Introduction

Addressing mode 2 is summarized in Table 1-3.

Table 1-3 Addressing mode 2

Operation Assembler

Immediate offset [Rn, #+/-12bit_Ofset]

Register offset [Rn, +/-Rnj

Scaled register offset [Rn, +/-Rm LSL #5bit_shift_imi
[Rn, +/-Rm LSR #5bit_shift_imj
[Rn, +/-Rm ASR #5bit_shift_imj
[Rn, +/-Rm ROR #5bit_shift_imj
[Rn, +/-Rm RRY

Pre-indexed offset -

Immediate [Rn, #+/-12bit_Offset]!

Register [Rn, +/-Rni!

Scaled register [Rn, +/-Rm LSL #5bit_shift_imj!
[Rn, +/-Rm LSR #5bit _shift imj!
[Rn, +/-Rm ASR #5bit_shift_imj!
[Rn, +/-Rm ROR #5bit_shift_imj!
[Rn, +/-Rm RRX]!

Post-indexed offset -

Immediate [Rn], #+/-12bit_Off set

Register [Rn], +/-Rm

Scaled register [RN], +/-Rm LSL #5bit_shift_imm
[Rn], +/-Rm LSR #5bit_shift_imm
[Rn], +/-Rm ASR #5bit_shift_imm
[Rn], +/-Rm ROR #5bit_shift_im
[Rn], + -Rm RRX

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Introduction

Addressing mode 2 (privileged) is summarized in Table 1-4.

Table 1-4 Addressing mode 2 (privileged)

Operation Assembler

Immediate offset [Rn, #+/-12bit_Ofset]

Register offset [Rn, +/-Rnj

Scaled register offset [Rn, +/-Rm LSL #5bit_shift_imi

[Rn, +/-Rm LSR #5bit_shift_imi

[Rn, +/-Rm ASR #5bit_shift_inmmi

[Rn, +/-Rm ROR #5bit_shift_imj
[Rn, +/-Rm RRX]
Post-indexed offset -

Immediate [Rn], #+/-12bit_Off set
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm LSL #5bit_shift_imm

[Rn], +/ -Rm LSR #5bit_shift_inm

[Rn], +/ -Rm ASR #5bit_shift_imm

[Rn], +/-Rm ROR #5bit_shift_inm

[Rn], +/-Rm RRX

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 1-17

Introduction

Addressing mode 3 is summarized in Table 1-5.

Table 1-5 Addressing mode 3

Operation Assembler
Immediate offset [Rn, #+/-8bit_Offset]
Pre-indexed [Rn, #+/-8bit_Ofset]!
Post-indexed [Rn], #+/-8bit_Ofset
Regjister offset [Rn, +/-Rnj
Pre-indexed [Rn, +/-Rni!
Post-indexed [Rn], +/-Rm

Addressing mode 4 (load) is summarized in Table 1-6.

Table 1-6 Addressing mode 4 (load)

Addressing mode

Stack type

| A Increment after

FD Full descending

| B Increment before

ED Empty descending

DA Decrement after

FA Full ascending

DB Decrement before

EA Empty ascending

Addressing mode 4 (store) is summarized in Table 1-7.

Table 1-7 Addressing mode 4 (store)

Addressing mode

Stack type

| A lncrement after

EA Empty ascending

| B Increment before

FA Full ascending

DA Decrement after

ED Empty descending

DB Decrement before

FD Full descending

1-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

Addressing mode 5 (load) is summarized in Table 1-8.

Table 1-8 Addressing mode 5 (load)

Operation

Assembler

Immediate offset

[Rn, #+/-(8bit Offset*4)]

Pre-indexed

[Rn, #+/-(8bit_Offset*4)]!

Post-indexed

[Rn], #+/-(8bit Offset*4)

Oprnd2 is summarized in Table 1-9.

Table 1-9 Oprnd2

Operation

Assembler

Immediate value

#32bit | mm

Logical shift left

Rm LSL #5bit_I mm

Logical shift right

Rm LSR #5bi t_| mm

Arithmetic shift right Rm ASR #5bit _I mm
Rotate right Rm ROR #5bit _|I mm
Register Rm

Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs
Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 1-19

Introduction

Fields are summarized in Table 1-10.

Table 1-10 Fields

Suffix

Sets

Control field mask hit (bit 0)

Extension field mask bit (bit 1)

Status field mask bit (bit 2)

Flags field mask bit (bit 3)

Condition fidlds are summarized in Table 1-11.

Table 1-11 Condition fields

Suffix Description

EQ Equal

NE Not equa

HS/ CS Unsigned higher or same
LO CC Unsigned lower

M Negative

PL Positive or zero

'S} Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same
GE Greater or equa

LT Lessthan

GT Greater than

LE Less than or equa

AL Always

1-20

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

1.4.2 Thumb instruction set summary

Introduction

The Thumb instruction set summary is given in Table 1-12.

Table 1-12 Thumb instruction set summary

Operation Assembler
Move Immediate MOV Rd, #8bit_Ilmm
Highto Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add Low and Low ADD Rd, Rs, Rn
Add High to Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit | mm
Add Value to SP ADD SP, #7bit_lmm
ADD SP, #-7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn
SUB Rd, Rs, #3bit_|mm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MIL Rd, Rs
Compare Low and Low CWP Rd, Rs
Compare Low and High CWP Rd, Hs
Compare High and Low CWP Hd, Rs
Compare High and High CWP Hd, Hs
Compare Negative CW Rd, Rs

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

1-21

Introduction

Table 1-12 Thumb instruction set summary (continued)

Operation Assembler
Compare Immediate CWP Rd, #8bit_Ilmm
Logical AND AND Rd, Rs
XOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MN Rd, Rs
Test bits TST Rd, Rs
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_inmm
LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_inmm
LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #b5bit_shift_imm
ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional -
If Z set BEQ | abel
If Z clear BNE | abel
If Cset BCS | abel
If Cclear BCC | abel
If N set BM | abel
If N clear BPL | abel
IfV set BVS | abel
If V clear BVC | abel
If Csetand Z clear BH | abel
If Cclear or Z set BLS | abel
If N set and V set, or BCE | abel

If N clear and V clear

1-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Introduction

Table 1-12 Thumb instruction set summary (continued)

Operation Assembler
If N set and V clear, or BLT | abel
If N clear and V set
If Z clear, and N and V sgt, or BGT | abel
If Z clear, and N and V clear
If Z set, or BLE | abel
N set and V clear, or
N clear and V set
Unconditional B | abel
Long branch with link BL | abel
Long branch, link and BLX | abel
exchange instruction
Branch and exchange To address held in Low reg BX Rs
To address held in High reg BX Hs
Branch, link and exchange To address held in Low reg BLX Rs
To address held in High reg BLX Hs

Load

With immediate offset

Word LDR Rd, [Rb, #7bit_offset]

Halfword LDRH Rd, [Rb, #6bit_offset]

Byte LDRB Rd, [Rb, #5bit_offset]
With register offset -

Word LDR Rd, [Rb, Ro]

Halfword LDRH Rd, [Rb, Ro]

Halfword signed LDRSH Rd, [Rb, Ro]

Byte LDRB Rd, [Rb, Ro]

Byte signed LDRSB Rd, [Rb, Ro]
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 1-23

Introduction

Table 1-12 Thumb instruction set summary (continued)

Operation Assembler
Address -
Using PC ADD Rd, PC, #10bit_Offset
Using SP ADD Rd, SP, #10bit Offset
Multiple LDM A Rb!, <reglist>
Store With immediate offset -
Word STR Rd, [Rb, #7bit_offset]
Halfword STRH Rd, [Rb, #6bit_offset]
Byte STRB Rd, [Rb, #5bit_offset]
With register offset -
Word STR Rd, [Rb, Ro]
Halfword STRH Rd, [Rb, Ro]
Byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STM A Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>

Push LR and registers onto stack PUSH <reglist, LR>
Pop registers from stack POP <reglist>
Pop registers and PC from stack POP <reglist, PC

Softwareinterrupt

SW 8bit_I nm

Softwar e breakpoint

BKPT<i nmedi at e>

1-24

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Chapter 2
Programmer’s Model

This chapter describes the ARM9E-S programmer’s model. It contains the following
sections:

. About the programmer’s modeh page 2-2
. Processor operating states on page 2-3

. Memory formats on page 2-4

. Instruction length on page 2-6

. Data types on page 2-7

. Operating modes on page 2-8

. Registers on page 2-9

. The program status registers on page 2-16
. Exceptions on page 2-20.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 2-1

Programmer’s Model

2.1 About the programmer’s model

The ARMO9E-S processor core implements ARMV5STE architecture. Thisincludes the
32-bit ARM instruction set and the 16-bit Thumb instruction set. For details of both the
ARM and Thumb instruction sets, refer to the ARM Architecture Reference Manual.

The ARM9E-S programmer’s model is described in:
. Processor operating states on page 2-3

. Memory formats on page 2-4

. Instruction length on page 2-6

. Data types on page 2-7

. Operating modes on page 2-8

. Registers on page 2-9

. The program status registers on page 2-16

. Exceptions on page 2-20.

2-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.2 Processor operating states

The ARMO9E-S has two operating states:
ARM state 32-bit, word-aligned ARM instructions are executed in this state.
Thumb state 16-bit, halfword-aligned Thumb instructions.

In Thumb state, the Program Counter (PC) uses bit 1 to select between aternate
halfwords.

Note

Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

You can switch the operating state of the ARM9E-S core between ARM state and
Thumb state using the BX and BLX instructions, and loads to the PC. Switching stateis
described in the ARM Architecture Reference Manual . For full details of the ARM9E-S
instruction set, contact ARM.

All exceptions are entered, handled, and exited in ARM state. If an exception occursin
Thumb state, the processor revertsto ARM state. The transition back to Thumb state
occurs automatically on return from the exception handler.

2.2.2 Interworking ARM and Thumb state

The ARM9E-S alows you to mix ARM and Thumb code as you wish. For details see
Chapter 7 Interworking ARM and Thumb in the Software Development Kit User Guide.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-3

Programmer’s Model

2.3 Memory formats

The ARMO9E-S views memory as alinear collection of bytes numbered in ascending
order from zero. Bytes 0 to 3 hold thefirst stored word, and bytes 4 to 7 hold the second
stored word, for example.

The ARM9E-S can treat words in memory as being stored in either:
. Big-endian format
. Little-endian format.

2.3.1 Big-endian format

In big-endian format, the ARM9E-S stores the most significant byte of a word at the
lowest-numbered byte, and the least significant byte at the highest-numbered byte.
Therefore, byte 0 of the memory system connects to data lines 31 to 24. This is shown

in Figure 2-1.
Bit 31 24 23 16 15 8 7 0 Word address
Higher address
8 9 10 1 8
4 5 6 7 4
0
Lower address 0 ! 2 3

» Most significant byte is at lowest address
* Word is addressed by byte address of most significant byte

Figure 2-1 Big-endian addresses of bytes within words

2.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least-significant byte
of the word and the highest-numbered byte is the most significant. Therefore, byte 0 of
the memory system connects to data lines 7 to 0. This is shown in Figure 2-2 on

page 2-5.

2-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Bit
Higher address

Lower address

Programmer’s Model

31 24 23 16 15 8 7 0 Word address
1 10 9 8 8
7 6 5 4 4
3 2 1 0 0

* Least significant byte is at lowest address
» Word is addressed by byte address of least significant byte

Figure 2-2 Little-endian addresses of bytes within words

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-5

Programmer’s Model

2.4 Instruction length

Instructions are either:
. 32 bits long (in ARM state)
. 16 bits long (in Thumb state).

2-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.5 Data types

The ARMO9E-S supports the following data types:
. word (32-bit)

. halfword (16-bit)

. byte (8-bit).

You must align these as follows:

. word quantities must be aligned to four-byte boundaries

. halfword quantities must be aligned to two-byte boundaries
. byte quantities can be placed on any byte boundary.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 2-7

Programmer’s Model

2.6 Operating modes
The ARM9E-S has seven modes of operation:
. User mode is the usual ARM program execution state, and is used for executing
most application programs.
. Fast interrupt (FIQ) mode is used for handling fast interrupts.
. Interrupt (IRQ) mode is used for general-purpose interrupt handling.
. Supervisor mode is a protected mode for the operating system.
. Abort mode is entered after a data or instruction Prefetch Abort.
. System mode is a privileged user mode for the operating system.
. Undefined mode is entered when an undefined instruction exception occurs.
Modes other than User mode are collectively known as privileged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.
2-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.7 Registers

The ARM9E-S has atotal of 37 registers:
. 31 general-purpose 32-bit registers
. 6 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operat
mode determine which registers are available to the programmer.

2.7.1 The ARM state register set

In ARM state, 16 general registers and one or two status registers are accessible at a
one time. In privileged modes, mode-specific banked registers become available.
Figure 2-3 on page 2-11 shows which registers are available in each mode.

The ARM state register set contains 16 directly-accessible registers, r0 to r15. A furthe
register, theCurrent Program Status Register (CPSR), contains condition code flags

and the current mode bits. Registers r0 to r13 are general-purpose registers used to hc
either data or address values. Registers r14, r15, and the CPSR have the following
special functions:

Link register Register r14 is used as the subroutiimk Register (LR).

Register r14 receives a copy of r15 wheBranch with Link (BL
or BLX) instruction is executed.

You can treat r14 as a general-purpose register at all other times.
The corresponding banked registers r14_svc, r14_irq, r14_fiq,
rl4_abt and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or viéteor BLX
instructions are executed within interrupt or exception routines.

Program counter Register r15 holds the PC.
In ARM state, bits [1:0] of r15 are zero. Bits [31:2] contain the PC.
In Thumb state, bit [0] is zero. Bits [31:1] contain the PC.

In privileged modes, another register, 8aed Program Status Register (SPSR), is
accessible. This contains the condition code flags and the mode bits saved as a result
the exception that caused entry to the current mode.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 2-9

Programmer’s Model

Banked registers have a mode identifier that indicates which User mode register they
are mapped to. These mode identifiers are shown in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier
User usra

Fast interrupt fiq

Interrupt irg

Supervisor sve

Abort abt

System usra

Undefined und

a. Theusridentifier is usually omitted
from register names. It isonly used in
descriptions where the User or System
mode register is specifically accessed
from another operating mode.

FIQ mode has seven banked registers mapped to r8-r14 (r8_fig—r14_fiq). As a result
many FIQ handlers do not need to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specific
registers mapped to r13 and r14, allowing a private stack pointer and link register for
each mode.

2-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Figure 2-3 shows the ARM state registers.

ARM state general registers and program counter

Programmer’s Model

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 5 r5 r5 r5 r5
ré r6 ré r6 r6 r6
r7 r7 r7 r7 r7 r7
r8 r8_fiq r8 r8 r8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r11 r11_fiq r11 1 r11 r
r12 r12_fiq r12 r12 r12 r12
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Indicates that the normal register used by the User or System mode

has been replaced by an alternative register specific to the exception mode.

Figure 2-3 Register organization in ARM state

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

2-11

Programmer’s Model

2.7.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. The programmer has
direct accessto:

. eight general registers, rO—r7 (for details of high register access in Thumb state
seeAccessing high registersin Thumb state on page 2-15).

. the PC

. a stack pointer, SP (ARM r13)

. an LR (ARM r14)

. the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set is
shown in Figure 2-4 on page 2-13.

2-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Thumb state general registers and program counter

Programmer’s Model

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 5 r5 r5 5 r5
ré r6 r6 ré r6 ré
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR_fiq LR_svc LR_abt LR _irq LR _und
PC pPC PC PC PC PC
Thumb state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Indicates that the normal register used by the User or System mode

has been replaced by an alternative register specific to the exception mode.

Figure 2-4 Register organization in Thumb state

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

2-13

Programmer’s Model

2.7.3 Therelationship between ARM state and Thumb state registers

The Thumb state registers relate to the ARM state registersin the following way:

. Thumb state rO—r7 and ARM state rO—r7 are identical.

. Thumb state CPSR and SPSRs and ARM state CPSR and SPSRs are identical.
. Thumb state SP maps onto ARM state r13.

. Thumb state LR maps onto ARM state r14.

. The Thumb state PC maps onto the ARM state PC (r15).

These relationships are shown in Figure 2-5.

Thumb state ARM state
r0 —_— r0 —
r1 L r1
r2 R r2
@
r3 EEEE—— r3 2
@
r4 EEE—— r4 i',’
r5 EE—— r5 2
-
r6 _ 6
r7 —_ 7
r8 —
r9 —
r10 ®
ri1 32
r2 g
Stack pointer (SP) —_— > Stack pointer (r13) 5
Link register (LR) _— Link register (r14) *
Program counter (PC) B — e Program counter (r15) —
CPSR R CPSR
SPSR R SPSR

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

Note

Registers r0—r7 are known as the low registers. Registers r8-r15 are known as the high
registers.

2-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.7.4 Accessing high registers in Thumb state

In Thumb state, the high registers (r8—r15) are not part of the standard register set. Wit
assembly language programming you have limited access to them, but can use them fc
fast temporary storage.

You can use special variants of M@/ instruction to transfer a value from a low register
(in the range r0—r7) to a high register, and from a high register to a low registen he
instruction allows you to compare high register values with low register values. The
ADD instruction allows you to add high register values to low register values. For more
details, refer to thARM Architecture Reference Manual.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-15

Programmer’s Model

2.8

281

The program status registers

The ARMO9E-S contains a CPSR, and five SPSRs for exception handlersto use. The
program status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bits in the status registers is shown in Figure 2-6.

Condition code flags Reserved Control bits

([[\
31 30 29 28 27 26 9 8 7 6 5 4 3 2 1 0

(Nzlelvlal-[//-[-[-][t]F][T]|me[ms[mz]m]mol
Sticky overflow \—i‘Mode bits

Overflow L Statebit

Carry/Borrow/Extend FIQ disable

Zero IRQ disable

Negative/Less than

Figure 2-6 Program status register

Note

The unused bits of the status registers might be used in future ARM architectures, and
must not be modified by software. The unused bits of the status registers are readable,
to allow the processor state to be preserved (for example, during process context
switches) and writable, to allow the processor state to be restored. To maintain
compatibility with future ARM processors, and as good practice, you are strongly
advised to use a read-modify-write strategy when changing the CPSR.

The condition code flags

The N, Z, C, and V bits are the condition code flags. They can be set by arithmetic and
logical operations, and also by MSR and LDM instructions. The ARM9E-S tests these
flags to determine whether to execute an instruction.

Allinstructions can execute conditionally on the state of the N, Z, C, and V bits in ARM
state. In Thumb state, only the Branch instruction can be executed conditionally. For
more information about conditional execution, refer toARM Architecture Reference
Manual.

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

The Q flag

The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic
instructions:

. QADD

. QDADD

. QSuUB

. QDSuUB

. SMLAXxy
. SMLAWY

The Q flag issticky in that, once set by an instruction, it remains set until explicitly
cleared by ansR instruction writing to CPSR. Instructions cannot execute
conditionally on the status of the Q flag. To determine the status of the Q flag you must
read the PSR into a register and extract the Q flag from this. For details of how the Q
flag is set and cleared, see individual instruction definitions iR\ Architectural
Reference Manual.

2.8.2 The control bits

The bottom eight bits of a PSR are known collectively asdhiol bits. They are the:
. Interrupt disable bits

. T bit

. Mode bits on page 2-18.

The control bits change when an exception occurs. When the processor is operating i
a privileged mode, software can manipulate these bits.
Interrupt disable bits

The | and F bits are the interrupt disable bits:
. when the | bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

T bit

—— Caution

Never use awsR instruction to force a change to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-17

Programmer’s Model

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state
. when the T bit is clear, the processor is executing in ARM state.

The operating state is reflected by tAd@I T external signal.

Mode bits

The M4, M3, M2, M1, and MO bits (M[4:0]) are the mode bits. These bits determine the
processor operating mode as shown in Table 2-2.

—— Caution

An illegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset.

Not all combinations of the mode bits define a valid processor mode, so take care to use
only those bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

10000 User r0—r7, r8-r12 SP, LR, PC, CPSR r0-rl4, PC, CPSR

10001 FIQ r0—r7, r8_fig-r12_fig SP_fig, LR_fig PC, rO—r7,r8_fig—rl4_fig, PC, CPSR, SPSR_fig
CPSR, SPSR_fiq

10010 IRQ r0—r7, r8-r12 SP_irq, LR_irg, PC, CPSR, r0-r12, r13_irqg, r14_irg, PC, CPSR, SPSR_irqg
SPSR_irq

10011 Supervisor r0-r7, r8-r12, SP_svc, LR_svc, PC, CPSR, r0-r12, r13_svc, r14_svc, PC, CPSR,
SPSR_svc SPSR_svc

10111 Abort r0—r7, r8-r12, SP_abt, LR_abt, PC, CPSR, r0-rl12, r13_abt, r14_abt, PC, CPSR,
SPSR_abt SPSR_abt

11011 Undefined r0—r7, r8-r12, SP_und, LR_und, PC, CPSR, r0-r12, r13_und, r14_und, PC, CPSR,
SPSR_und SPSR_und

11111 System r0-r7, r8-r12 SP, LR, PC, CPSR ro-r14, PC, CPSR

a Accessto theseregistersislimited in Thumb state.

2-18

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.8.3 Reserved bits

Theremaining bitsinthe PSRs are unused, but are reserved. When changing a PSR flag
or control bits, make sure that these reserved bits are not altered. You must ensure that
your program does not rely on reserved bits containing specific val ues because future
processors might use some or al of the reserved bits.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-19

Programmer’s Model

2.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example, to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM9E-S preserves the current processor state so that the original
program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptionsaredealt with in thefixed
order given in Exception priorities on page 2-27.

This section provides details of the ARM9E-S exception handling:
. Exception entry and exit summary

. Entering an exception on page 2-21

. Leaving an exception on page 2-21.

2.9.1 Exception entry and exit summary

Table 2-3 summarizes the PC value preserved in the relevant r14 on exception entry,
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry and exit

Previous state

Er)_(:?rtlon Return instruction Notes
y ARMr14 x Thumb r14 x

SwWi MWVS PC, Rl14_svc PC+4 PC+2 Where the PC is the address of the
SWI, undefined instruction, or

UNDEF MOVS PC, R14_und PC+4 PC+2 instruction that had the Prefetch

PABT SUBS PC, Rl4 abt, #4 PC+4 PC+4 Abort.

FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 Where the PC is the address of the

- ingtruction that was not executed
|RQ SUBS PC, R14_I rq, #4 PC+4 PC+4 because the F|Q or |RQ took
priority.

DABT SUBS PC, R14_abt, #8 PC+8 PC+8 Where the PC is the address of the
Load or Store instruction that
generated the Data Abort.

RESET NA - - The value saved in r14_svc upon
reset is UNPREDI CTABLE.

BKPT SUBS PC, R14_abt, #4 PC+4 PC+4 Software breakpoint.

2-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.9.2 Entering an exception
When handling an exception the ARM9E-S:
1. Preservesthe address of the next instruction in the appropriate LR. When the
exception entry is from:

. ARM state, the ARM9E-S copies the address of the next instruction into the
LR (current PC + 4 or PC + 8 depending on the exception).

. Thumb state, the ARM9E-S writes the value of the PC into the LR, offset
by a value (current PC + 4 or PC + 8 depending on the exception) that
causes the program to resume from the correct place on return.

The exception handler does not need to determine the state when entering an
exception. For example, in the case of a SMYS PC, r14_svc always

returns to the next instruction regardless of whether the SWI was executed in
ARM or Thumb state.

2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value which depends on the exception.
4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM9E-S can also set the interrupt disable flags to prevent otherwise
unmanageable nesting of exceptions.

Note

Exceptions are always entered, handled, and exited in ARM state. When the process
is in Thumb state and an exception occurs, the switch to ARM state takes place
automatically when the exception vector address is loaded into the PC.

2.9.3 Leaving an exception

When an exception has completed, the exception handler must move the LR, minus a
offset to the PC. The offset varies according to the type of exception, as shown in
Table 2-3 on page 2-20.

If the S bitis set and rd = r15, the core copies the SPSR back to the CPSR and clear:
the interrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically resets the T bit to the
value it held immediately prior to the exception. The | and F bits are automatically
restored to the value they held immediately prior to the exception.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 2-21

Programmer’s Model

2.9.4 Reset

When the nRESET signal is driven LOW areset occurs, and the ARM9E-S abandons
the executing instruction.

When nRESET isdriven HIGH again the ARM9E-S:

1. ForcesCPSR[4:0] to b10011 (Supervisor mode), setsthel and F bitsin the CPSR,
and clearsthe CPSR T hit. Other bitsin the CPSR are indeterminate.

2. Forcesthe PC to fetch the next instruction from the reset vector address.

3. Revertsto ARM state, and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.

Refer to Chapter 3 Device Reset for more details of the ARMOE-S reset behavior.

2.9.5 Fast interrupt request

The Fast Interrupt Request (FI Q) exception supportsfast interrupts. In ARM state, FIQ
mode has eight private registers to reduce, or even remove the requirement for register
saving (minimizing the overhead of context switching).

An FIQ isexternaly generated by taking the nFIQ signal input LOW. The nFIQ input
isregistered internally to the ARMOE-S. It is the output of this register that is used by
the ARMOE-S control logic.

Irrespective of whether exception entry isfrom ARM state or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC, R14_fiq, #4

You can disable FIQ exceptions within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM9E-S checks for aLOW level on the output of the
nFlQ register at the end of each instruction.

FIQs and IRQs are disabled when an FIQ occurs. Nested interrupts are allowed but it is
up to the programmer to save any corruptible registers and to re-enable FIQs and
interrupts.

2.9.6 Interrupt request

The Interrupt Request (IRQ) exception isanormal interrupt caused by aLOW level on
the nlRQ input. IRQ has alower priority than FIQ, and is masked on entry to an FIQ
sequence. You can disable IRQ at any time, by setting the | bit in the CPSR from a
privileged mode.

2-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

2.9.7 Aborts

Programmer’s Model

Irrespective of whether exception entry isfrom ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC, R14_irq, #4

You can disable IRQ exceptions within a privileged mode by setting the CPSR | flag.
When the flagis clear, the ARM9E-S checks for aLOW level on the output of the
nlRQ register at the end of each instruction.

FIQs and IRQs are disabled when an IRQ occurs. Nested interrupts are allowed but it is
up to you to save any corruptible registers and to re-enable FIQs and interrupts.

An abort indicates that the current memory access cannot be completed. An abort is
signaled by one of the two external abort input pins, IABORT and DABORT.

There are two types of abort:
. Prefetch Abort
. Data Abort on page 2-23.

IRQs are disabled when an abort occurs.

Prefetch Abort

This is signaled by an assertion on FABORT input pin and checked at the end of
each instruction fetch.

When a Prefetch Abort occurs, the ARM9E-S marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the Execute stage
of the pipeline. If the instruction is not executed, for example because a branch occur:
while it is in the pipeline, the abort does not take place.

After dealing with the cause of the abort, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC, R14_abt , #4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

This is signaled by an assertion on B%®BORT input pin and checked at the end of
each data access, both read and write.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-23

Programmer’s Model

The ARM9E-Simplements the base restored Data Abort model, which differsfrom the
base updated Data Abort model implemented by the ARM7TDMI-S.

The difference in the Data Abort model affects only a very small section of operating
system code, in the Data Abort handler. It does not affect user code.

With the base restored Data Abort model, when a Data Abort exception occurs during
the execution of amemory access instruction, the base register is always restored by the
processor hardware to the value it contained before the instruction was executed. This
removes the need for the Data Abort handler to unwind any base register update, which
might have been specified by the aborted instruction. This greatly simplifiesthe
software Data Abort handler.

The abort mechanism allows you to implement a demand-paged virtual memory
system. In such asystem, the processor isallowed to generate arbitrary addresses. When
the data at an address is unavailable, the Memory Management Unit (MMU) signalsan
abort. The abort handler must then work out the cause of the abort, make the requested
data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, and its state is not affected by the
abort.

After dealing with the cause of the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC, R14_abt , #8
This action restores both the PC and the CPSR, and retries the aborted instruction.

2.9.8 Software interrupt instruction

You can use the Software | nterrupt Instruction (SW) to enter Supervisor mode, usually
to request a particular supervisor function. A SWI handler returns by executing the
following instruction, irrespective of the processor operating stete:

MOVS PC, R14_svc

Thisaction restores the PC and CPSR, and returnsto the instruction following the SW .
The SWI handler reads the opcode to extract the SWI function number.

IRQs are disabled when a software interrupt occurs.

2-24

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.9.9 Undefined instruction

When an instruction is encountered that neither the ARM9E-S, nor any coprocessor in
the system can handle, the ARM 9E-S takes the undefined i nstruction trap. Software can
use this mechanism to extend the ARM instruction set by emulating undefined
coprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
instruction, irrespective of the processor operating state:

MOVS PC, R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

IRQs are disabled when an undefined instruction trap occurs. For more information
about undefined instructions, refer to the ARM Architecture Reference Manual.

2.9.10 Breakpointinstruction (BKPT)

A breakpoint (BKPT) instruction operates as though the instruction caused a Prefetch
Abort.

A breakpoint instruction does not cause the ARM9E-S to take the Prefetch Abort
exception until the instruction reaches the Execute stage of the pipeline. If the
instruction is not executed, for example because a branch occurs whileitisin the
pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction
irrespective of the processor operating state:
SUBS PC, R14_abt , #4

This action restores both the PC and the CPSR, and retries the breakpointed instruction.

Note

If the Embeddedl CE-RT logic is configured into stopping mode, a breakpoint
instruction causes the ARM9E-S to enter debug state. See Debug control register on
page C-34.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 2-25

Programmer’s Model

2.9.11 Exception vectors

You can configure the location of the exception vector addresses using the input
CFGHIVECS, as shown in Table 2-4.

Table 2-4 Configuration of exception vector address locations

Value of Exception vector
CFGHIVECS base location
0 0x0000 0000
1 OxFFFF 0000

Table 2-5 shows the exception vector addresses and entry conditions for the different
exception types.

Table 2-5 Exception vectors

Exception Offset from Mode on entry | bit on F bit on
vector base entry entry

Reset 0x00 Supervisor Disabled Disabled
Undefined instruction 0x04 Undefined Disabled Unchanged
Software interrupt 0x08 Supervisor Disabled Unchanged
Abort (prefetch) 0x0C Abort Disabled Unchanged
Abort (data) 0x10 Abort Disabled Unchanged
Reserved 0x14 Reserved - -

IRQ 0x18 IRQ Disabled Unchanged
FIQ 0x1C FIQ Disabled Disabled

2-26 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Programmer’s Model

2.9.12 Exception priorities

When multiple exceptions arise at the same time, afixed priority system determinesthe
order in which they are handled:

o0k wbdPE

Reset (highest priority).

Data Abort.

FIQ.

IRQ.

Prefetch Abort.

BKPT, undefined instruction, and SWI (lowest priority).

Some exceptions cannot occur together:

The BKPT, or undefined instruction, and SWI exceptions are mutually exclusive.
Each corresponds to a particular (non-overlapping) decoding of the current
instruction.

When FIQs are enabled, and a Data Abort occurs at the same time as an FIQ, th
ARMBOE-S enters the Data Abort handler, and proceeds immediately to the FIQ
vector.

A normal return from the FIQ causes the Data Abort handler to resume execution

Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts to support virtua
memory.

The FIQ handler must not access any memory that can generate a Data Abort,
because the initial Data Abort exception condition is lost.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 2-27

Programmer’s Model

2-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 3
Device Reset

This chapter describes the ARM9E-S reset behavior. It contains the following sections:
. About device reset on page 3-2

. Reset modes on page 3-3

. ARMOE-S behavior on exit fromreset on page 3-5.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 3-1

Device Reset

3.1

About device reset

This section describes the ARM9E-S reset signals and how you must use them for
correct operation of the device.

The ARM9E-S has two reset inputs:

NRESET ThenRESET signal isthe main CPU reset that initializes the mgjority of
the ARMOE-S logic.

DBGNTRST The DBGnTRST signal isthe debug logic reset that you can use to reset
the ARM9E-S TAP controller and the Embedded| CE-RT unit.

Both nRESET and DBGNTRST are active LOW signals that asynchronously reset
logicinthe ARM9E-S. You must take care when designing the logic to drive these reset
signals.

3-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Device Reset

3.2 Reset modes

Two reset signals are present in the ARMO9E-S design to enable you to reset different
partsof the design independently. A description of the reset signaling combinations and
possible applicationsis shown in Table 3-1.

Table 3-1 Reset modes

Reset mode NnRESET DBGNTRST Application

Power-on reset 0 0 Reset at power up, full system
reset.

CPU reset 0 1 Reset of CPU core only, watchdog
reset.

EmbeddedI CE-RT reset 1 0 Reset of EmbeddedI CE-RT
circuitry.

Normal 1 1 No reset. Normal run mode.

3.2.1 Power-on reset

You must apply power-on or cold reset to the ARM9E-S when power isfirst applied to
the system. In the case of power-on reset, the leading (falling) edge of the reset signals
(nRESET and DBGNTRST) does not have to be synchronousto CLK. Thetrailing
(rising) edge of the reset signals must be set up and held about the rising edge of the
clock. You must do thisto ensure that the entire system leaves reset in a predictable
manner. Thisis particularly important in multi-processor systems. Figure 3-1 showsthe
application of power-on reset.

CLK \ \ \

\
nRESET [
—

DBGnTRST \

Figure 3-1 Power-on reset

It is recommended that you assert the reset signals for at least three CLK cyclesto
ensure correct reset behavior. Adopting athree-cycle reset eases theintegration of other
ARM partsinto the system, for example, ARM9TDM | based designs.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 3-3

Device Reset

3.2.2 CPU reset

A CPU or warm reset initializes the mgjority of the ARM9E-S CPU, excluding the
ARMOE-S TAP controller and the Embedded| CE-RT unit. CPU reset istypically used
for resetting a system that has been operating for some time, for example, watchdog
reset.

Sometimes you might not want to reset the Embedded| CE-RT unit when resetting the
rest of the ARMOE-S, for example, if Embeddedl CE-RT has been configured to
breakpoint (or capture) fetches from the reset vector.

For CPU reset, both the leading and trailing edges of NRESET must be set up and held
about the rising edge of CLK. This ensures that there are no metastability issues
between the ARM9E-S and the Embedded| CE-RT unit.

3.2.3 EmbeddedICE-RT reset

EmbeddedI CE-RT reset initializes the state of the ARM9E-S TAP controller and the
EmbeddedI CE-RT unit. Embedded| CE-RT reset istypically used by the Multi-ICE
module for hot connection of a debugger to a system.

Embedded| CE-RT reset allows initiaization of the EmbeddedI CE-RT unit without
affecting the normal operation of the ARM9E-S.

For EmbeddedI CE-RT reset, both the leading and trailing edges of DBGNTRST must
be set up and held about the rising edge of CLK. This ensures that there are no
metastability issues between the ARM9E-S and the EmbeddedI CE-RT unit.

Refer to Clocks and synchronization on page 7-14 for more details of synchronization
between the Multi-ICE and ARM9E-S.

3.2.4 Normal operation

During normal operation, neither CPU reset nor Embedded| CE-RT reset is asserted.

3-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Device Reset

3.3 ARMO9E-S behavior on exit from reset

When nRESET isdriven LOW, the currently executing instruction terminates
abnormally. INMREQ, | SEQ, DnMREQ, DSEQ, and DM ORE change
asynchronously to indicate an internal cycle. When nRESET isdriven HIGH, the
ARMO9E-S starts requesting instructions from memory again once the nRESET signal
has been registered, and the first memory access starts two cycles later. The NnRESET
signal is sampled on therising-edge of CLK.

The behavior of the memory interface coming out of reset is shown in Figure 3-2.

F D E M w
ak |\ \ \ \ \ \ \ [
nRESET | /
INMREQ \ A A [
ISEQ / V \
1A[31:1] N oo [o TN _oxe [)
INSTR[31:0] (1) (1) (1)
DnMREQ \
DSEQ [
DMORE /
DnRW X
DA[31:0] X

Figure 3-2 ARM9E-S behavior on exit from reset

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 3-5

Device Reset

3-6

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Chapter 4

Memory Interface

This chapter describes the ARM9E-S memory interface. It contains the following
sections:

. About the memory interface on page 4-2

. Instruction interface on page 4-3

. Instruction interface addressing signals on page 4-4
. Instruction interface data timed signals on page 4-6
. Endian effects for instruction fetches on page 4-7

. Instruction interface cycle types on page 4-8

. Data interface on page 4-13

. Data interface addressing signals on page 4-15

. Data interface data timed signals on page 4-18

. Data interface cycle types on page 4-24

. Endian effects for data transfers on page 4-30

. Use of CLKEN to control bus cycles on page 4-31.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-1

Memory Interface

4.1 About the memory interface

The ARM9E-S has a Harvard bus architecture with separate instruction and data
interfaces. Thisallows concurrent instruction and data accesses, and greatly reducesthe
Cycles Per Instruction (CPl) of the processor. For optimal performance, single-cycle
memory accesses for both interfaces are required, although the core can be wait-stated
for nonsequential accesses, or slower memory systems.

For both instruction and data interfaces, the ARM9E-S processor core uses pipelined
addressing. This means that the address and control signals are generated the cycle
before the data transfer takes place. All memory accesses are timed with the clock
CLK.

For each interface there are different types of memory access:
. Nonsequential

. Sequential

. Internal

. Coprocessor transfer (for the data interface).

The ARM9E-S can operate in both big-endian and little-endian memory configurations
and this is selected by titFGBIGEND input. The endian configuration affects both
interfaces, so you must take care when designing the memory interface logic to allow
correct operation of the processor core.

For system programming purposes, you must normally provide some mechanism for
the data interface to access instruction memory. There are two main reasons for this:

. The use of in-line data for literal pools is very common. This data is fetched using
the data interface but is normally contained in the instruction memory space.

. To enable debug using the JTAG interface it must be possible to download code
into the instruction memory. This code has to be written to memory through the
data interface, because the instruction interface is read-only. In this case it is
essential for the data interface to have access to the instruction memory.

A typical implementation of an ARM9E-S based cached processor has Harvard caches
and a unified memory structure beyond the caches, therefore giving the data interface
access to the instruction memory space. However, for an SRAM-based system, you
cannot use this technique, and you must use an alternative method.

It is not necessary for the instruction interface to have access to the data memory area
unless the processor needs to execute code from data memory.

4-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

4.2 Instruction interface

The ARMO9E-S requests instructions for execution using the instruction memory
interface. A new instruction is fetched over the instruction bus whenever an instruction
enters the Execute stage of the pipeline.

Instruction fetches take place in the Fetch stage of the pipeline.

4.2.1 Instruction interface signals
The signalsin the ARM9E-S instruction interface can be grouped into four categories:

. Clocking and clock control signals:
— CLK
— CLKEN
— nRESET.

. Address class signals:
— 1A[31:1]
— ITBIT
— InTRANS
— InM[4:0].

. Memory request signals:
— InMREQ
— ISEQ.

. Data timed signals:
— INSTR[31:0]
— |ABORT.
Each of these signal groups shares a common timing relationship to the bus interface

cycle. All signals in the ARM9E-S instruction interface are generated from, or sampled
by, the rising edge LK.

You can extend bus cycles using @leK EN signal (se&Jse of CLKEN to control bus
cycles on page 4-31). Unless otherwise staidK EN is permanently HIGH.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-3

Memory Interface

4.3 Instruction interface addressing signals

The address class signals for the instruction memory interface are:
o IA[31:]]

. ITBIT

. INTRANS on page 4-5

. InM[4:0] on page 4-5.

431 1A[31:1]

IA[31:1] is the 31-bit address bus that specifies the address for the transfer. All
addresses are byte addresses, so a burst of 32-bit instruction fetches results in the
address bus incrementing by four for each cycle.

Note

The ARM9E-S does not produt&[Q] as all instruction accesses are halfword-aligned
(that is,IA[Q] = 0).

The address bus provides 4GB of linear addressing space. When a word access is
signaled the memory system must ignb¢l].

4.3.2 ITBIT

Thel TBIT signal encodes the size of the instruction fetch. The ARM9E-S can request
word-sized instructions (when in ARM state) or halfword-sized instructions (when in
Thumb state). This is encoded MBI T as shown in Table 4-1.

Table 4-1 Transfer widths

ITBIT Transfer width
1 Halfword
0 Word

The size of transfer does not change during a burst of S cycles.

4-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

4.3.3 INTRANS

43.4 InM[4:0]

Memory Interface

The InTRANS signal encodesinformation about the transfer. A memory management
unit usesthissignal to determineif an accessisfrom aprivileged mode. Therefore, you
can use this signal to implement an access permission scheme. The encoding of
INTRANS is shown in Table 4-2.

Table 4-2 INTRANS encoding

INTRANS Mode
0 User
1 Privileged

InM[4:0] indicates the operating mode of the ARM9E-S. This bus corresponds to the
bottom 5 bits of the CPSR, the outputs are inverted with respect to the CPSR.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-5

Memory Interface

4.4

44.1

4.4.2

Instruction interface data timed signals

INSTR[31:0]

IABORT

The data timed signals for the instruction memory interface are:
. INSTR[31:0]
. |ABORT.

INSTR[31:0] is the read data bus, and is used by the ARM9E-S to fetch opcodes. The
INSTR[31:0] signal is sampled on the rising edgeCafK at the end of the bus cycle.

IABORT indicates that an instruction fetch failed to complete success®BORT
is sampled at the end of the bus cycle during active memory cycles (S cycles and N
cycles).

If IABORT is asserted on an opcode fetch, the abort is tracked down the pipeline, and
the Prefetch Abort trap is taken if the instruction is executed.

IABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

For more details about aborts, gdmrts on page 2-23.

4-6

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

4.5 Endian effects for instruction fetches

The ARMOE-S performs 32-bit or 16-bit instruction fetches depending on whether the
processor isin ARM or Thumb state. The processor state can be determined externally
by the value of the ITBIT signal. When thissignal is LOW, the processor isin ARM
state, and 32-bit instructions are fetched. When I TBIT is HIGH, the processor isin
Thumb state and 16-bit instructions are fetched.

The address produced by the ARMOE-S is always halfword-aligned. However, the
memory system must ignore bit 1of the address, depending on the size of theinstruction
request. The significant address bits are listed in Table 4-3.

Table 4-3 Significant address bits

. Significant
ITBIT Width address bits
1 Halfword 1A[31:1]
0 Word 1A[31:2]

When ahalfword instruction fetch is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM9E-S extracts the valid halfword field from it. The
field extracted depends on the state of the CFGBIGEND signal, which determines the
endianness of the system (see Memory for mats on page 2-4).

The fields extracted by the ARM9E-S are shown in Table 4-4.

Table 4-4 32-bit instruction fetches

Little-endian Big-endian
ITBIT ALL] CFGBIGEND =0 CFGBIGEND =1
0 X INSTR[3L:0] INSTR[3L:0]

When connecting 8-bit or 16-bit memory systemsto the ARM9E-S, ensurethat the data
is presented to the correct byte lanes on the ARM9E-S as shown in Table 4-5.

Table 4-5 Halfword accesses

Little-endian Big-endian
ITBIT AL CFGBIGEND =0 CFGBIGEND =1
1 0 INSTR[15:0] INSTR[31:16]
1 1 INSTR[31:16] INSTR[15:0]

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-7

Memory Interface

4.6 Instruction interface cycle types

The ARMO9E-S instruction interface is pipelined. The address class signals and the
memory reguest signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for amemory cycle to decode the address, and
respond to the access request.

A single memory cycleis shown in Figure 4-1.

CLK JT\; \; \;h
Address class
signals (/\FX Address X
:glélgEQ’ \PX Cycle type X
INSTR[31:0] Insg;c;ion
Bus cycle
>

Figure 4-1 Simple memory cycle

The ARMOE-Sinstruction interface can perform three different types of memory cycle.
These areindicated by the state of the INMREQ and | SEQ signals. Memory cycle
types are encoded on the INnMREQ and | SEQ signals as shown in Table 4-6.

Table 4-6 Cycle types

INMREQ ISEQ Cycle type Description

0 0 N cycle Nonsequential cycle
0 1 Scycle Sequential cycle

1 0 | cycle Internal cycle

1 1 - Reserved

A memory controller for the ARM9E-S must commit to an instruction memory access
only onan N cycleor an S cycle.

4-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

The ARM9E-S instruction interface has three types of memory cycle:

Nonsequential cycle

Sequential cycle

Internal cycle

During this the ARM9E-S core requests a transfer to or from an
addressthat isunrel ated to the address used in the preceding cycle.

During this the ARM9E-S core requests a transfer to or from an
address that is either one word, or one halfword greater than the
address used in the preceding cycle.

During thisthe ARM9E-S core does not require atransfer because
itisperforming aninternal function, and no useful prefetching can
be performed at the sametime.

4.6.1 Instruction interface, nonsequential cycles

A nonsequential instruction fetch is the simplest form of an ARM9E-S instruction
interface cycle, and occurswhen the ARM9E-Srequestsatransfer to or from an address
that isunrel ated to the address used in the preceding cycle. The memory controller must
initiate a memory access to satisfy this request.

The address class signals and the INnMREQ, I SEQ = N cycle signals are broadcast on
the instruction interface bus. At the end of the next bus cycle the instruction is
transferred to the CPU from memory. Thisis shown in Figure 4-2.

CLK JI I Iﬁ
;:iddre;ss class X PO X
gnals
pusea =1
INSTR[31:0] Insg:cation B

N cycle

Figure 4-2 Nonsequential instruction fetch cycle

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-9

Memory Interface

46.2 Instruction interface, sequential cycles

Sequentia instruction fetches are used to perform burst transfers on the bus. This
information can be used to optimize the design of amemory controller interfacing to a
burst memory device, such asa DRAM.

During a sequentia cycle, the ARM9E-S requests a memory location that is part of a
sequential burst. If thisisthe first cycle in the burst, the address might be the same as
the previous internal cycle. Otherwise the address is incremented from the previous
instruction fetch that was performed:

. for a burst of word accesses, the address is incremented by 4 bytes
. for a burst of halfword access, the address is incremented by 2 bytes.

The types of bursts are shown in Table 4-7.

Table 4-7 Burst types

Burst type Address Cause

increment
Word read 4 bytes ARM code fetches
Halfword read 2 bytes Thumb code fetches

All accesses in a burst are of the same width, direction, and protection type. For more
details, seénstruction interface addressing signals on page 4-4.

Bursts of byte accesses are not possible with the instruction memory interface.

A burst always starts with an N cycle, or a merged I-S cycld steiction interface,
merged I-Scycles on page 4-11), and continues with S cycles. A burst comprises
transfers of the same type or size. TAE31:1] signal increments during the burst. The
other address class signals are unaffected by a burst.

An example of a burst access is shown in Figure 4-3 on page 4-11.

4-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

CLK

Address class
signals

— \

Memory Interface

B

W

Address

X Address + 4

InMREQ,
ISEQ X N cycle X S cycle
|NSTR[31 :0] Inzt;ttjctgon Inztartmtg)n
N cycle S cycle
-+

Figure 4-3 Sequential instruction fetch cycles

4.6.3 Instruction interface, internal cycles

During an internal cycle, the ARM9E-S does not require an instruction fetch, because
aninternal function is being performed, and no useful prefetching can be performed at
the sametime.

Where possiblethe ARM9E-S broadcasts the address for the next access, so that decode
can start, but the memory controller must not commit to a memory access. Thisis
described further in Instruction interface, merged I-Scycles.

4.6.4 Instruction interface, merged I-S cycles

Where possible, the ARM9E-S performs an optimization on the busto allow extratime
for memory decode. When this happens, the address of the next memory cycleis
broadcast during an internal cycle on this bus. This alows the memory controller to
decode the address, but it must not initiate a memory access during thiscycle. Ina
merged I-S cycle, the next cycleisasequential cycleto the same memory location. This
commitsto the access, and the memory controller must initiate the memory access. This
is shown in Figure 4-4 on page 4-12.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-11

Memory Interface

CLK

Address class
signals

InMREQ,
ISEQ

INSTR[31:0]

B

X Address X Address + 2 X

X | cycle X S cycle X S cycle X
Instryction Instruction
datg 1 data 2
| cycle Merged S cycle

Figure 4-4 Merged I-S cycle

Thereis an exception to the merged |-S behavior in the case of a coprocessor 15 MCR.
Inthis casethe | A busis used to transmit datato CP15 (see Coprocessor 15 MCRs on
page 6-18).

Note

When designing a memory controller, make sure that the design also works when an
I cycleisfollowed by an N cycle to adifferent address. This sequence might occur
during exceptions, or during writes to the program counter. It is essential that the
memory controller does not commit to the memory cycle during an | cycle.

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

4.7 Data interface
The ARM9E-S requests data using the data memory interface.

Datatransferstake place in the Memory stage of the pipeline. The operation of the data
interfaceis very similar to the instruction interface.

4.7.1 Data interface signals
The signasin the ARM9E-S data bus interface can be grouped into four categories:

. Clocking and clock control signals:
— CLK
— CLKEN
— nRESET.

. Address class signals:
— DAJ[31L:0]
— DnTRANS
— DnRW
— DnM[4:0]
— DMASY[1:0]
— DLOCK.

. Memory request signals:
— DnMREQ
— DSEQ
— DMORE.

. Data timed signals:
— WDATA[31:Q]
— RDATA[31:Q]
— DABORT.

Note

All memory accesses are conditioned by the state of the memory request signals. Yo
must not initiate a memory access unless the memory request signals indicate that or
is required. SePata interface cycle types on page 4-24 for more details.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-13

Memory Interface

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signalsinthe ARM9E-S datainterface are generated from, or sampled by the
rising edge of CLK.

You can extend bus cycles using the CLKEN signal (see Use of CLKEN to control bus
cycles on page 4-31). Unless otherwise stated CLKEN is permanently HIGH.

4-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

4.8

48.1

4.8.2

Memory Interface

Data interface addressing signals

DA[31:0]

DnRW

The address class signals are:

. DA[31:0]

. DnRW

. DMAY 1:0] on page 4-16
. DnTRANS on page 4-16
. DLOCK on page 4-17

. DnM[4:0] on page 4-17.

DA[31:0] is the 32-bit address bus that specifies the address for the transfer. All
addresses are byte addresses, so a burst of word accesses results in the address bus
incrementing by 4 for each cycle.

The address bus provides 4GB of linear addressing space. When a word access is
signaled the memory system must ignore the bottom twad#d: 0], and when a
halfword access is signaled the memory system must ignore the bottD#A[it,

DnRW specifies the direction of the transBnRW indicates an ARM9E-S write

cycle when HIGH, and an ARM9E-S read cycle when LOW. A burst of S cycles is
always either a read burst, or a write burst, because the direction cannot be changed
the middle of a burst.

Note
You must not initiate writes to memory purely on the basiBd®W. You must use the
status of the data interface request signals to condition writes to memoBat&ee
interface cycle types on page 4-24 for more details.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-15

Memory Interface

4.8.3

4.8.4

DMAS[1:0]

DnTRANS

The DM AS[1:0] bus encodes the size of the transfer. The ARM9E-S can transfer word,
halfword, and byte quantities. Thisis encoded on DMAS[1:0] as shown in Table 4-8.

Table 4-8 Transfer widths

DMAS[1:0] Transfer width

00 Byte

01 Halfword

10 Word

11 Reserved

The size of transfer does not change during a burst of S cycles. Bursts of halfword or
byte accesses are not possible on the ARM9E-S datainterface.

Note

A writable memory system for the ARM9E-S must have individual byte write enables.
Both the C compiler and the ARM debug tool chain (for example, Multi-ICE) assume
that arbitrary bytesin the memory can be written. If individual byte write capability is
not provided, you might not be able to use these tools.

The DnTRANS bus encodes information about the transfer. A memory management
unit usesthis signal to determineif an accessisfrom aprivileged mode. Therefore, you
can usethis signal to implement an access permission scheme. The encoding of
DnTRANS s shown in Table 4-9.

Table 4-9 DnTRANS encoding

DnTRANS Mode

0 User

1 Privileged

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

4.85 DLOCK

4.8.6 DnM[4:0]

Memory Interface

DL OCK indicatesto an arbiter that an atomic operation is being performed on the bus.
DLOCK isnormaly LOW, but is set HIGH to indicate that a SWP or SWPB instruction
is being performed. These instructions perform an atomic read/write operation, and can
be used to implement semaphores.

If DLOCK isasserted in acycle, then this indicates that there is another accessin the
next cycle that must be locked to the first. In the case of a multi-master system, the
ARM processor must not be degranted the bus when alocked transaction is being
performed.

DnM[4:0] indicates the operating mode of the ARM9E-S. This bus corresponds to the
bottom five bits of the CPSR, unless aforced User mode access is being performed, in
which case DnM[4:0] indicates User mode. These bits are inverted with respect to the
CPSR.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-17

Memory Interface

4.9 Data interface data timed signals

49.1 WDATA[31:0]

4.9.2 RDATA[31:0]

49.3 DABORT

The datatimed signals are:
« WDATA[31:0]

. RDATA[31:0]

. DABORT.

WDATA[31:0] is the write data bus. All data written out from the ARM9E-S is
broadcast on this bus. Data transfers from the ARM9E-S to a coprocessor also use this
bus during C cycles. In normal circumstances, a memory system must sample the
WDATA[31:0] bus on the rising edge 6L K at the end of a write bus cycle. The value
onWDATA[31:0] is valid only during write cycles.

RDATA[31:0] is the read data bus, and is used by the ARM9E-S to fetch data. It is
sampled on the rising edge©EK at the end of the bus cycle, and is also used during
C cycles to transfer data from a coprocessor to the ARM9E-S.

DABORT indicates that a memory transaction failed to complete successfully.
DABORT is sampled at the end of the bus cycle during active memory cycles (S cycles
and N cycles).

If DABORT is asserted on a data access, it causes the ARM9E-S to take the Data Abort
trap.

DABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

The ARM9E-S design differs from ARM9TDMI in that ARM9TDMI features a
combinational path frorPABORT to DnMREQ, DSEQ, andDM ORE. This path is
present so that an aborted memory access can cancel memory accesses requested by
following instructions.

An example of this is shown in Figure 4-5 on page 4-19, where a load instruction
follows an aborted store.

4-18

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

CLK N \

Qgiraeuis class | wrtcaddress | | Readaddres{ |
DnRW / \ /
DnMREQ _T\ \ﬁ /’/ \
DSEQ a \‘/ /’\ |
DMORE __q /’\ |
wﬂ;\mm [uiedaa |

J

DABORT 1) / |
Write cycle I cycle

(aborted)

Figure 4-5 ARM9TDMI effect of DABORT on following memory access

This DABORT to DnMREQ, DSEQ, and DM ORE path has been removed from the
ARMOE-S design because:

. a combinational input to output path is undesirable in an ASIC design flow
. the path is critical in ARMOTDMI.

Due to this modification, the memory system connected to ARM9E-S is responsible for
ignoring a data memory request made during the cycle of an aborted data transfer. Thi
is necessary to prevent a following memory access from corrupting memory after an
aborted access. The memory system must igpopMREQ, DSEQ, andDM ORE in

this case.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-19

Memory Interface

Figure 4-6 shows the ARM9E-S behavior for an aborted STR instruction followed by
an LDM instruction. While the STR instruction is canceled, amemory request is made
in thefirst cycle of the LDM before the Data Abort exception is taken.

CLK N T R Y

Address class x
signals

Write address X Read address X

DrRW 1 \ |
powrea ||] / L
e) ! A C
owore | R L
ey _

DABORT 1 [|

Write cycle Read cycle
(aborted) (ignored by
memory system)

Figure 4-6 ARM9E-S aborted data memory access

For more details about aborts, see Aborts on page 2-23.

4-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

4.9.4 Byte and halfword accesses

The ARMOE-S indicates the size of atransfer using the DMAS[1:0] signals. These are
encoded as shown in Table 4-10.

Table 4-10 Transfer size encoding

DMASJ[1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

All writable memory in an ARM9E-S based system must support the writing of
individual bytesto allow the use of the C compiler and the ARM debug tool chain (for
example, Multi-ICE).

The address produced by the ARMOE-S is always byte-aligned. However, the memory
system must ignore the insignificant bits of the address. The significant address bitsare
listed in Table 4-11.

Table 4-11 Significant address bits

Significant

DMAS[1:0] Width address bits

00 Byte DA[31:0]
01 Hafword DA[31:]]
10 Word DA[31:2]

Reads

When a halfword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM9E-S extracts the valid halfword or byte field from
it. The fields extracted depend on the state of the CFGBIGEND signal, which
determines the endianness of the system (see Memory formats on page 2-4).

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-21

Memory Interface

The fields extracted by the ARMOE-S are shown in Table 4-12.

Table 4-12 Word accesses

. . Little-endian Big-endian
DMASI1:0] DA[1:0] CFGBIGEND =0 CFGBIGEND =1
10 XX RDATA[31:0] RDATA[31:0]

When performing aword load, the ARM9E-S can rotate the data returned internaly if
the address used is unaligned. Refer to the ARM Architectural Reference Manual for
more details.

When connecting 8-bit to 16-bit memory systemsto the ARM9E-S, you must make sure
that the data is presented to the correct byte lanes on the ARM9E-S as shown in
Table 4-13 and Table 4-14.

Table 4-13 Halfword accesses

. . Little-endian Big-endian
DMASI1:0] DA[1:0] CFGBIGEND =0 CFGBIGEND =1
01 0X RDATA[15:0] RDATA[31:16]
01 1X RDATA[31:16] RDATA[15:0]

Table 4-14 Byte accesses

owsiz owra Hieeds o Sges
00 00 RDATA[7:0] RDATA[31:24]

00 01 RDATA[15:8] RDATA[23:16]
00 10 RDATA[23:16] RDATA[15:8]

00 11 RDATA[31:24] RDATA[7:0]

4-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

Writes

When the ARM9E-S performs a byte or halfword write, the data being written is
replicated across the bus, asillustrated in Figure 4-7. The memory system can use the
most convenient copy of the data. A writable memory system must be capable of
performing awrite to any single bytein the memory system. This capability isrequired
by the ARM C compiler and the Debug tool chain.

Byte writes
ARMO9E-S Memory interface
—> £ WDATA[31:24]
— 4 WDATA[23:16]
—> £ WDATA[15:8]
Register[7:0] /g S é WDATA[7:0]
Halfword writes
ARM9YE-S Memory interface
A
—p & WDATA[31:16]
D
A A
Register[15:0] g SN g WDATA[15:0]
D D

Figure 4-7 Data replication

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-23

Memory Interface

4.10 Data interface cycle types
The ARM9E-S datainterface is pipelined, and so the address class signals and the
memory reguest signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for amemory controller to decode the address,
and respond to the access request.
A single memory cycleis shown in Figure 4-8.
CLK i N U A U B e
Address class
signals Address X
DnMREQ,
DSEQ, \bx Cycle type X
DMORE
Y\\I,VDI‘QZ;A[31 :0] \DX Write data X
(RRDeg.(I:-l?[31 0] X Read|data x
Bus cycle
Figure 4-8 Simple memory cycle
The ARMOE-S datainterface can perform four different types of memory cycle. These
areindicated by the state of the DnMREQ and DSEQ signals. Memory cycletypesare
encoded on the DnM REQ and DSEQ signals as shown in Table 4-15.
Table 4-15 Cycle types
DnMREQ DSEQ Cycle type Description
0 0 N cycle Nonsequential cycle
0 1 Scycle Sequential cycle
1 0 I cycle Internal cycle
1 1 Ccycle Coprocessor register transfer cycle
4-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

A memory controller for the ARM9E-S must commit to a data memory access only on
an N cycleor an Scycle.

The ARMOE-S data interface has four types of memory cycle:

Nonsequential cycle

During thiscyclethe ARM9E-S corerequestsatransfer to or from
an address that is unrelated to the address used in the preceding

cycle.

Sequential cycle Duringthiscyclethe ARM9E-S corerequestsatransfer to or from
an address that is one word greater than the address used in the
preceding cycle.

Internal cycle During this cycle the ARM9E-S core does not require atransfer
because it is performing an internal function.

Coprocessor register transfer cycle

During this cycle the ARM9E-S core uses the data bus to
communicate with a coprocessor, but does not require any action
by the memory system.

4.10.1 Data interface, nonsequential cycles

A nonsequential cycleisthe simplest form of an ARM9E-S datainterface cycle, and
occurs when the ARM9E-S requests atransfer to or from an addressthat is unrelated to
the address used in the preceding cycle. The memory controller must initiate amemory
access to satisfy this request.

The address class signals and the DnMREQ and DSEQ = N cycl e are broadcast on
the data bus. At the end of the next bus cycle the datais transferred between the CPU
and the memory. Thisis shown in Figure 4-9 on page 4-26.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-25

Memory Interface

CLK

Address class
signals

DnMREQ,
DSEQ,
DMORE

WDATA[31:0]
(Write)

RDATA[31:0]
(Read)

N

x Address

x N cycle

X Write data

X Read|

N cycle

Figure 4-9 Nonsequential data memory cycle

The ARM9E-S can perform back to back, nonsequential memory cycles. This happens,
for example, when an STRinstruction and an LDR instruction are executed in
succession, as shown in Figure 4-10 on page 4-27.

4-26

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Memory Interface

CLk Jou \ \

Address class X
signals

Write address X Read address X

DnRW 1] \ /

DnMREQ,
DSEQ, X N cycle X N cycle X
DMORE

WDATA[31:0] |

(Write) Write data X

RDATA[31:0] | Read]data |
(Read)

Write cycle Read cycle
4———a——p

Figure 4-10 Back to back memory cycles

If you are designing a memory controller for the ARMOE-S, and your memory system
isunable to cope with this case, usethe CLKEN signal to extend the bus cycleto allow
sufficient cycles for the memory system (see Use of CLKEN to control bus cycleson

page 4-31).

4.10.2 Datainterface, sequential cycles

Sequential cycles perform burst transfers on the bus. You can use this information to
optimize the design of amemory controller interfacing to a burst memory device, such
asaDRAM.

During asequential cycle, the ARMOE-S requests a memory location that is part of a
sequential burst. If thisisthefirst cyclein the burst, the address can be the same asthe
previous internal cycle. Otherwise the address is incremented from the previous cycle.
For aburst of word accesses, the address is incremented by 4 bytes.

Bursts of halfword or byte accesses are not possible on the ARM9E-S data interface.

A burst always starts with an N cycle and continues with S cycles. A burst comprises
transfers of the sametype. The DA[31:0] signal increments during the burst. The other
address class signals are unaffected by a burst.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 4-27

Memory Interface

The types of bursts are shown in Table 4-16.

Table 4-16 Burst types

Burst type Address increment Cause
Word read 4 bytes LDMinstruction
Word write 4 bytes STMinstruction

All accessesin aburst are of the same width, direction, and protection type. For more
details, see Instruction interface addressing signals on page 4-4.

An example of aburst accessis shown in Figure 4-11.

CLK N \ \ o o

':Ig(:\':lzs class x Address X Address + 4 X
DnMREQ] A |

EEmEmn

DSEQ

DMORE \ /

Y\\Ilvl?‘llt\:f[:s“ :0] X Write data 1 X Write data 2 X
RDATA[31:0] Read Repd
(Read) data 1 data 2

N cycle S cycle

Figure 4-11 Sequential access cycles

The DM ORE signal is active during load and store multiple instructions and only ever
goes HIGH when DnMREQ is LOW. This signal effectively gives the same
information asDSEQ), but acycle ahead. Thisinformation isprovided to allow external
logic more time to decode sequential cycles.

4-28

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

4.10.3 Data interface, internal cycles

During an internal cycle, the ARM9E-S does not require a memory access, as an
internal function is being performed.

4.10.4 Data interface, merged I-S cycles

The ARM9E-S does not perform merged I-S cycles on the data memory interface.

4.10.5 Datainterface, coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM9E-S uses the data interface to
transfer datato or from a coprocessor. A memory cycleis not required and the memory
controller does not initiate a transaction.

The coprocessor interface is described in Chapter 6 Coprocessor Interface.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-29

Memory Interface

411 Endian effects for data transfers

The ARM9E-S supports 32-bit, 16-bit, and 8-bit data memory access sizes. The endian
configuration of the processor, set by CFGBI GEND, affects only nonword transfers
(16-bit and 8-hit transfers).

4,11.1 Writes
For data writes by the processor, the write datais duplicated on the data bus. So for a
16-bit data store, one copy of the data appears on the upper half of the write data bus,
WDATA[31:16], and the same data appears on the lower half, WDATA[15:0]. For
8-bit writes four copies are output, one on each byte lane:
. WDATA[31:24]
« WDATA[23:16]
« WDATA[15:8]
+ WDATA[7:0].
This considerably eases the memory control logic design and helps overcome any
endian effects.

4.11.2 Reads
For data reads, the processor reads a specific part of the read data bus. This is
determined by:
. the endian configuration
. the size of the transfer
. bits 1 and 0 of the data address bus.
Table 4-13 on page 4-22 shows which bits of the data bus are read for 16-bit reads, and
Table 4-14 on page 4-22 shows which bits are read for 8-bit transfers.
For simplicity of design, 32-bits of data can be read from memory and the processor
ignores any unwanted bits.

4-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Memory Interface

4.12 Use of CLKEN to control bus cycles

The pipelined nature of the ARM9E-S bus interface means that there is a distinction
between clock cycles and bus cycles. You can use CLK EN to stretch abus cycle, so that
it lasts for many clock cycles. The CLKEN input extends the timing of bus cyclesin
increments of complete CLK cycles:

. whenCLKEN is HIGH on the rising edge €L K, a bus cycle completes
. whenCLKEN is sampled LOW, the bus cycle is extended.

The CLKEN input extends bus cycles on both the instruction and data interfaces when
asserted.

In the pipeline, the address class signals and the memory request signals are ahead
the data transfer by oes cycle. In a system usi@L KEN this can be more than one
CLK cycle. This is illustrated in Figure 4-12, which shadsK EN being used to

extend a nonsequential cycle. In the example, the first N cycle is followed by another
N cycle to an unrelated address, and the address for the second access is broadcast
before the first access completes.

CLK Joo \
CLKEN U A [] (A []

Address class x
signals

Address 1 X Address 2 X ext address

DnMREQ,
DSEQ, X N cycle X N cycle X Next cycle type
DMORE

aiinil

RDATA[31:0] Read ReRd
(Read) data 1 data 2

First bus cycle

Second bus cycle

A

Figure 4-12 Use of CLKEN

Note

When designing a memory controller, you must sample the vallieBI&REQ, | SEQ,
DnMREQ, DSEQ, DMORE, and the address class signals only wWBeKEN is
HIGH. This ensures that the state of the memory controller is not accidentally updated

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 4-31

Memory Interface

during awaited cycle. In addition, the ARM9E-S can alter the request for asubsequent
memory cycle during awaited (CLKEN LOW) cycle. See Withdrawal of memory
requests in waited cycles.

4.12.1 Withdrawal of memory requests in waited cycles

The ARM9E-S can dlter the value of the memory request and address signals during
cyclesinwhich CLKEN is LOW. Thisis done to improve the worst case interrupt
latency of ARM9E-S systems. For example, a pending memory request can be
withdrawn if the coreis about to take an interrupt and the access is unnecessary.

The ARM9E-S does not alter or withdraw any access to which it iscommitted. An
accessis said to be committed when the address and request signals are sampled on the
rising edge of CLK when CLKEN isHIGH.

The ARMO9E-S only attempts to alter or withdraw an uncommitted access during the
extended (or waited) bus cycle of a previous access. Alteration of the next memory
reguest during awaited bus cycle is shown in Figure 4-13.

CLK B A W R U N e L U R W
CLKEN] [\ [

Add |

signr:i:s class X Address 1 X Ignored X Ignored X X X
DnMREQ,

OMORE, 7 N I BTN BT L
DnSPEC ‘ First bus cycle . | Second bus cyclg

Figure 4-13 Alteration of next memory request during waited bus cycle

Note

Thisbehavior affectsthe | A, INMREQ, | SEQ, DA, DnMREQ, DSEQ, DMORE, and
DnSPEC outputs of the ARM9E-S.

4-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 5
Interrupts

This chapter describes the ARM9E-S interrupt behavior. It contains the following
sections:

. About interrupts on page 5-2

. Hardware interface on page 5-3

. Maximum interrupt latency on page 5-7
. Minimum interrupt latency on page 5-8.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved.

Interrupts

5.1 About interrupts

The ARM9E-S provides a two-level, fixed-priority asynchronous hardware interrupt
scheme. Asynchronous is used here to mean asynchronous to the instruction flow, not
tothe processor clock (CLK). Refer to Chapter 9 AC Parametersfor detailson interrupt
signal timing.

The Fast Interrupt Request (FIQ) exception provides support for fast interrupts. The
Interrupt Request (IRQ) exception provides support for normal priority interrupts.

Refer to Exceptions on page 2-20 for more details about the programmer’s model for
interrupts.

This chapter discusses:

. issues concerning the hardware interface to the ARM9E-S interrupt mechanism
that a system designer must be aware of when integrating an ARM9E-S system

. issues that a programmer must be aware of when writing interrupt handler
routines

. the worst case and best case interrupt latency.

5-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Interrupts

5.2 Hardware interface

The hardware interrupt is described under the following headings:
. Generating an interrupt

. Synchronization

. Re-enabling interrupts after an interrupt exception

. Interrupt registers on page 5-5.

5.2.1 Generating an interrupt

You can make the ARM9E-S take the FIQ or IRQ exceptions (if interrupts are enabled
within the core) by asserting (LOW) th&1Q or nlRQ inputs, respectively.

Itis essential that once asserted, the interrupt input remains asserted until the ARM9E-
has completed its interrupt exception entry sequence. When an interrupt input is
asserted, it must remain asserted until the ARM9E-S acknowledges to the source of th
interrupt that the interrupt has been taken. This acknowledgement normally occurs
when the interrupt service routine accesses the peripheral causing the interrupt, for
example:

. by reading an interrupt status register in the systems interrupt controller
. by writing to a clear interrupt control bit
. by writing data to, or reading data from the interrupting peripheral.

5.2.2 Synchronization

ThenFIQ andnl RQ inputs are synchronous inputs to the ARM9E-S, and must be setup
and held about the rising edge of the ARM9E-S cl@ikK . If interrupt events that are
asynchronous t€LK are present in a system, synchronization register(s) that are
external to the ARM9E-S are required.

5.2.3 Re-enabling interrupts after an interrupt exception

You must take care when re-enabling interrupts (for example at the end of an interrup
routine or with a reentrant interrupt handler). You must ensure that the original source
of the interrupt has been removed before interrupts are enabled again on the ARM9E-£
If you cannot guarantee this, the ARM9E-S might retake the interrupt exception
prematurely.

When considering the timing relation of removing the source of interrupt and
re-enabling interrupts on the ARM9E-S, you must take into account the pipelined
nature of the ARM9E-S and the memory system to which it is connected. For example
the instruction that causes the removal of the interrupt request (that is, deassertion of

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 5-3

Interrupts

nFIQ or nIRQ) typically does not take effect until after the Memory stage of that
instruction. The instruction that re-enables interrupts on the ARM9E-S can cause the
ARMO9E-S to be sensitive to interrupts as early as the Execute stage of that instruction.

For example, consider the following instruction sequence:

STRr0, [rl] ;Wite to interrupt controller, clearing interrupt
SUBS pc, rl4, #4 ;Return frominterrupt routine

The execution of this code sequenceisillustrated in Figure 5-1.

ck [\ \ \ \ -
nFIQ /

FIQDIS \

STR r0, [rl] D E M w

SUBS pc, rld, #4 D E M W

Figure 5-1 Retaking the FIQ exception

In Figure 5-1, the STRto the interrupt controller does not cause the deassertion of the
nFIQ input until cycle 4. The SUBS instruction causes the ARM9E-S to be sensitive to
interrupts during cycle 3.

Because of thistiming relationship, the ARM9E-S retakes the FIQ exception in this
example.

The FIQDIS (and similarly IRQDIS) output from the ARM9E-S indicates when the
ARMOE-S is sensitive to the state of the nFIQ (nIRQ) input (O for sensitive, 1 for
insensitive). If nFI Q isasserted in the same cycle that FIQDISisLOW, the ARM9E-S
takes the FIQ exception in alater cycle, even if the nFIQ input is subsequently
deasserted.

There are several approachesthat you can adopt to ensure that interrupts are not enabled
too early on the ARM9E-S. The best approach is highly dependent on the overall
system, and can be a combination of hardware and software.

5-4

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Interrupts

Example approaches are:

. Analyze the system and ensure enough instructions separate the instruction tha
removes the interrupt and the instruction that re-enables interrupts on the
ARMO9E-S.

. Have a software polling mechanism that reads back a status bit from the system
interrupt controller until it indicates that the interrupt has been removed before
re-enabling interrupts.

. Have a hardware system that stalls the ARM9E-S until the interrupt has been
removed.

5.2.4 Interrupt registers

Before use, thaFIQ andnlRQ inputs are registered internally to the ARM9E-S. To
improve interrupt latency, the registers are not condition€€lLYEN, and run freely,

off the system clockCLK. Internally, the ARM9E-S can use the registaretiQ or

nl RQ status to prepare for interrupt entry, even if the rest of the core is being waited by
CLKEN. The registered interrupt signals can only updaBiiK is running. Because

of this, the best interrupt latency can only be achieved K is not stopped. This
requirement is counteracted by power saving features of a system (for instance,
stoppingCL K while waiting for a slow memory device, or a power-down mode where
CLK is stopped). In systems like this, you can still achieve the best interrupt latency if
you replace the final disabl€l K cycle with one waitedGLKEN = 0) cycle.

Figure 5-2 shows a system whe&kK is stopped by external clock-gating for a
number of cycles.

ax [L

CLKEN

Figure 5-2 Stopping CLK for power saving

Figure 5-3 on page 5-6 shows a system which achieves most of the power saving
benefits of the system shown in Figure 5-2, while at the same time achieving best
interrupt latency.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 5-5

Interrupts

CLK | \

CLKEN

.

B
]

Figure 5-3 Using CLK and CLKEN for best interrupt latency

The system shown in Figure 5-3 combines CLK stopping and CL K EN waiting for best

power and interrupt latency performance.

5-6 Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Interrupts

5.3 Maximum interrupt latency

The processor samples the interrupt input pins on the rising-edge of the system clock,
CLK. Thesampled signal is examined and can cause an interrupt in the following cases:

Whenever a new instruction is scheduled to enter the Execute stage of the
pipeline.

Whenever a new instruction is in the Execute stage for theyuol& of its
execution. Hereycle refers toCLK cycles withCLKEN HIGH.

Whenever a coprocessor instruction is being busy waited in the Execute stage.

Whenever a new instruction which interlocked in the Execute stage has just
progressed to its firsictive Execute cycle.

If the sampled signal is asserted at the same time as a multicycle instruction has starte
its second or later cycle of execution, the interrupt exception entry does not start until
the instruction has completed.

The worst-case interrupt latency occurs when the longest posBidiastruction

incurs a Data Abort. The processor must enter the Data Abort mode before taking the
interrupt so that the interrupt exception exit can occur correctly. This causes a
worst-case latency of 24 cycles:

The longest DMinstruction is one that loads all of the registers, including the PC.
Counting the first Execute cycle as 1, tfmMtakes 16 cycles.

The last word to be transferred by tteMis transferred in cycle 17, and the abort
status for the transfer is returned in this cycle.

If a Data Abort happens, the processor detects this in cycle 18 and prepares for
the Data Abort exception entry in cycle 19.

Cycles 20 and 21 are the Fetch and Decode stages of the Data Abort entry
respectively.

During cycle 22, the processor prepares for FIQ entry, issuing Fetch and Decode
cycles in cycles 23 and 24.

Therefore, the first instruction in the FIQ routine enters the Execute stage of the
pipeline in stage 25, giving a worst-case latency of 24 cycles.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 5-7

Interrupts

5.4

Minimum interrupt latency

The minimum latency for FI1Q or IRQ is the shortest time the request can be sampled
by the input register (one cycle), plus the exception entry time (three cycles). Thefirst

interrupt instruction enters the Execute pipeline stage four cycles after the interrupt is
asserted.

5-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 6
ARMO9E-S Coprocessor Interface

This chapter describes the ARM9E-S coprocessor interface. It contains the following
sections:

. About the coprocessor interface on page 6-2
. LDC/STC on page 6-4

. MCR/MRC on page 6-8

. MCRR/MRRC on page 6-10

. Interlocked MCR on page 6-12

. Interlocked MCRR on page 6-13

. CDP on page 6-14

. Privileged instructions on page 6-16

. Busy-waiting and interrupts on page 6-17
. Coprocessor 15 MCRs on page 6-18

. Connecting coprocessors on page 6-19.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-1

ARMOE-S Coprocessor Interface

6.1

6.1.1

6.1.2

About the coprocessor interface

The ARM9E-S supports the connection of coprocessors. All types of ARM
coprocessors are supported. Coprocessors determine the instructions they need to
execute using a pipeline follower in the coprocessor. As each instruction arrives from
memory, it enters both the ARM pipeline and the coprocessor pipeline. The coprocessor
determines when an instruction is being fetched by the ARM9OE-S, so that the
instruction can be loaded into the coprocessor, and the pipeline follower advanced.

The coprocessor can be run either in step with the ARM9E-S pipeline, or one cycle
behind, depending on the timing priorities. The implications of the two approaches are
discussed in:

. Coprocessor pipeline operates in step with the ARM9OE-S

. Coprocessor pipeline one cycle behind the ARM9E-S.

Coprocessor pipeline operates in step with the ARM9E-S

In this case, the pipeline follower inside the coprocessor matches that of the ARM9E-S
exactly. This complicates the timing of key signals such aENB&R andCLKEN

inputs, because these now become more heavily loaded and therefore incur more delay.
For this reason, this method is only recommended for tightly integrated coprocessors
such as CP15, the system coprocessor.

Coprocessor pipeline one cycle behind the ARM9E-S

This method is recommended for external coprocessors. A coprocessor interface block
pipelines the instruction and control signals so that the loading is reduced on these
critical signals. This means that the pipeline in the coprocessor operates one cycle
behind the ARM9E-S pipeline. The disadvantage of this is that outputs of the
coprocessor are still expected in the correct pipeline stage, as seen from the ARM9E-S.
The most critical signal in this situation is likely to®El SD[1:0], the coprocessor

decode handshake signal. This must return the availability of the coprocessor by the end
of the decode cycle, as seen by the ARM9E-S. This is equivalent to the fetch cycle of
the coprocessor pipeline, and therefore there is not much time to generate this signal.
This means that the design might have to insert wait states for external coprocessor
accesses.

There are three classes of coprocessor instructions:
. LDC/STC

. MCR/MRC

. CDP.

6-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

Examples of how a coprocessor must execute these instruction classes are given in:
. LDC/STC on page 6-4

. MCR/MRC on page 6-8

. Interlocked MCR on page 6-12

. CDP on page 6-14.

Note

For the sake of clarity, all timing diagrams assume a system where the coprocessor
pipeline operates in step with the ARM9E-S.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-3

ARMOE-S Coprocessor Interface

6.2 LDC/STC

CLK

InMREQ

INSTR[31:0]

PASS

LATECANCEL

The number of words transferred is determined by how the coprocessor drives the
CHSD[1:0] and CHSE[1:0] buses. In the example ARM9E-S LDC/ STC cycle timing
shown in Figure 6-1, four words of data are transferred.

ARM processor pipeline {«@- Decode - Ez(gcou)te - E)((ggl)te - E)((écou)te - ffzgflf)e - Memory —-lt— Write — |
\ \ \ \ \ \ \ \

\ A i \
() [T) [T\

- - L/

/ \
\ [
o X

CHSD[1:0]

CHSE[1:0]

Coproc CPDOUT[31:0]
STC

Coproc CPDIN[31:0]
LDC

DnMREQ

DMORE

DA[31:0]

X co X co X dast X ighored Y

X A X h+4 X h+8 X A+C X

Figure 6-1 ARM9E-S LDC/STC cycle timing

Aswith al other instructions, the ARM9E-S processor core performs the main decode
using the rising edge of the clock during the Decode stage. From this, the core commits
to executing the instruction, and so performs an instruction fetch. The coprocessor
instruction pipeline keeps in step with the ARM9E-S by monitoring InM REQ.

6-4

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

At therising edge of CLK, if CLKEN isHIGH, and INMREQ isLOW, aninstruction
fetch istaking place, and INSTR[31:0] contains the fetched instruction on the next
rising edge of the clock, when CLKEN isHIGH. This means that:

. the last instruction fetched must enter the Decode stage of the coprocessor
pipeline

. the instruction in the Decode stage of the coprocessor pipeline must enter its
Execute stage

. the fetched instruction must be sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline mus
not advance.

Figure 6-2 shows the timing for these signals, and indicates when the coprocessor
pipeline must advance its state. In this timing diagram, Coproc clock shows the
effective clock applied to the pipeline follower in the coprocessor. It is derived such that
the coprocessor state must only advance on ri3irk§ edges whe@LKEN is HIGH.

The method of implementing this is dependent on the design style used, such as cloc
gating or register recirculating.

For efficient coprocessor design, an unmodified versi@@Ldf must be applied to the
Execution stage of the coprocessor. This allows the coprocessor to continue executin
an instruction even when the ARM9E-S pipeline is stalled.

-
CLK
CLKEN | T\ L 1 1
| | i i | |
| | | | | |
Coproc "\
clock —

Figure 6-2 ARM9E-S coprocessor clocking

During the Execute stage, the condition codes are compared with the flags to determin
whether the instruction really executes or not. The olRAES is asserted (HIGH) if
the instruction in the Execute stage of the coprocessor pipeline:

. iS a coprocessor instruction
. has passed its condition codes.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 6-5

ARMOE-S Coprocessor Interface

If a coprocessor instruction busy-waits, PASS is asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-waiting, PASSis
driven LOW, and the coprocessor stops execution of the coprocessor instruction.

A further output, LATECANCEL, cancels a coprocessor instruction when the
instruction preceding it caused a Data Abort, or a previous instruction caused a
watchpoint. LATECANCEL can be asserted even if thereisno coprocessor instruction
being executed. For coprocessor instructions, LATECANCEL isvalid on therising
edge of CLK on the cycle that follows the first Execute cycle of the coprocessor
instruction. See CDP on page 6-14 for an example of LATECANCEL behavior.

On therising edge of the clock, the ARM9E-S processor core examines the coprocessor
handshake signals CHSD[1:0] or CHSE[1:0]:

. If a new instruction is entering the Execute stage in the next cycle, the core
examine<CHSD[1:0].

. If the currently executing coprocessor instruction requires another Execute cycle,
the core examinegSHSE[1:0].

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9E-S processor core takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9E-S processor core must stall until the coprocessor can
catch up. This is known as thasy-wait condition. In this case, the
ARMOE-S processor core loops in an idle state waitin@CtdBSE[1:0]
to be driven to another state, or for an interrupt to occur.

If CHSE[1:0] changes to ABSENT, the undefined instruction trap is
taken. IFfCHSE[1:0] changes to GO or LAST, the instruction proceeds as
follows.

If an interrupt occurs, the ARM9E-S processor core is forced out of the
busy-wait state. This is indicated to the coprocessor byABS signal

going LOW. The instruction is restarted later and so the coprocessor must
not commit to the instruction (it must not change any of the coprocessor
state) until it has sed?PASS HIGH, when the handshake signals indicate
the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARMO9E-S processor core and the coprocessor must also consider the

6-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

state of the PASS signal before actually committing to the instruction.
For an LDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still have to be
transferred. When only one further word is to be transferred, the
coprocessor drivesthe handshake signalswith LAST. During the Execute
stage, the ARM9E-S processor core outputs the address for the LDC or
STC. Alsoin this cycle, DnMREQ isdriven LOW, indicating to the
memory system that a memory access is required at the data end of the
device. The timing for the dataon RDATA[31:0] for an LDC and
WDATA[31:0] for an STCis shown in Figure 4-1 on page 4-4.

LAST An LDC or STC can be used for more than one item of data. If thisis the
case, possibly after busy waiting, the coprocessor drives the coprocessor
handshake signals with a number of GO states, and in the penultimate
cycledrives LAST (LAST indicating that the next transfer is the final
one). If thereis only one transfer, the sequenceis
[WAIT,[WAIT,...]],LAST.

6.2.1 Coprocessor handshake encoding

Table 6-1 shows how the handshake signals CHSD[1:0] and CHSE[1:0] are encoded.

Table 6-1 Handshake signals

Handshake CHSDJ[1:0],
signal CHSEJ[1:0]
ABSENT 10
WAIT 00
GO 01
LAST 11

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-7

ARMOE-S Coprocessor Interface

6.3 MCR/MRC

MCR and MRC cycles ook very similar to STC or LDC. An exampleis shown in

Figure 6-3.
R Execute Memory Write
ARM processor pipeline - Decode -~ (GO) E o (GO) - (LAST) E
clk \ \ \ \ \ \
INSTR[31:0] (1) {1 (1)
MCR/MRC
INMREQ ~ __\ A /
PASS / \
CHSD[1:0] { dasT
CHSE[1:0] { ighored
WDATA[31:0] Y
(MCR)
RDATA[31:0] Y \
(MRC)

Figure 6-3 ARM9E-S MCR or MRC transfer timing

First INMREQ isdriven LOW to denote that the instruction on INSTR[31:0] is
entering the decode stage of the pipeline. This causesthe coprocessor to decode the new
instruction and drive CHSD[1:0] as required.

In the next cycle INMREQ isdriven LOW to denote that the instruction has now been
issued to the Execute stage. If the condition codes pass, and the instruction isto be
executed, the PASS signal is driven HIGH and the CHSD[1:0] handshake bus is
examined by the core (it isignored in al other cases).

6-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

For any successive Execute cycles the CHSE[1:0] handshake busis examined. When
the LAST condition isobserved, theinstruction is committed. In the case of an MCR, the
WDATA[31:0] busis driven with the register data. In the case of an MRC,
RDATA[31:0] issampled at the end of the ARM9E-S Memory stage and written to the
destination register during the next cycle.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 6-9

ARMOE-S Coprocessor Interface

6.4 MCRR/MRRC

MCRR and MRRC cycles look very similar to STC or LDC. An exampleis shownin
Figure 6-4.

ARM processor pipeline - Decode - E)((g%l)t e B o Iffz%!;;a B o I\(/I&néqrr;/ - (I_/ant% >

CLK _\ \ \ \ \ _

INSTR[31:0] (1) (1) (1)

InMREQ A [

PASS / \

CHSD[1:0] { Jleo X

CHSE[1:0] X dast X Ignored Y

WDAT&[?R:% | Data (Rd) [\ Data2 (Rn) [}

RDATA[31:0
(M[RRC§ Datal XDa‘FaZX

Figure 6-4 ARM9E-S MCRR or MRRC transfer timing

First InMREQ isdriven LOW to denote that the instruction on INSTR[31:0] is
entering the Decode stage of the pipeline. This causes the coprocessor to decode the
new instruction and drive CHSDJ[1:0] as required.

In the next cycle INMREQ isdriven LOW to denote that the instruction has now been
issued to the Execute stage. If the condition codes pass, and the instruction isto be
executed, the PASS signal is driven HIGH and the CHSD[1:0] handshake bus is
examined by the core (it isignored in al other cases).

For any successive Execute cycles the CHSE[1:0] handshake bus is examined. When
the LAST condition is observed, the instruction proceedsto its final Execute cycle. In
the case of an MCRR, the WDATA[31:0] busisdriven with the first register data during

6-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

the second Execute cycle, and the second register datain the Memory cycle. In the case
of an MRRC, RDATA[31:0] is sampled at the end of the second Execute and first
Memory cycles and written to the destination registers during the next cycle.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-11

ARMOE-S Coprocessor Interface

6.5 Interlocked MCR

CLK

INSTR[31:0]

InMREQ

PASS

LATECANCEL

CHSDI[1:0]

CHSE[1:0]

WDATA[31:0]
(MCR)

If the datafor an MCR operation is not available inside the ARM9E-S pipeline during its
first Decode cycle, the ARMOE-S pipeline interlocks for one or more cycles until the
datais available. An example of thisiswhere the register being transferred is the
destination from apreceding LDRinstruction. In this situation the MCRinstruction enters
the Decode stage of the coprocessor pipeline, and remains there until it can enter the
Execute stage.

Figure 6-5 gives an example of an interlocked MCR.

ARM processor pipeline ﬁiggiﬁii)-bd- Decode - %ﬁACHI;? - '?I’_(i‘éﬁ‘lf)e - Memory -t~ Write -
\ \ \ \ \ \ \ .
< \ [\ [\
|/ ./ Ju——
MCR
N VO S /A R WO \
/ \
\ /
X AT] AT
{ dasT Y ighored)
X

RDATA[31:0]
(MRC)

Figure 6-5 ARM9E-S interlocked MCR

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

6.6 Interlocked MCRR

If the data for an MCRR operation is not available inside the ARM9E-S pipeline during
itsfirst Decode cycle, the ARM9E-S pipelineinterlocks for one or more cyclesuntil the
datais available. An example of thisiswhere the register being transferred isthe
destination from a preceding LDR instruction. In this situation the MCRR instruction
enters the Decode stage of the coprocessor pipeline, and remains there until it can enter
the Execute stage.

Figure 6-6 gives an example of an interlocked MCRR.

ARM processor pipeline ﬁ(ilr?::rﬁii)-bd- Decode -~ E?S%J)te -t Elﬁgﬁ - Memory - Write |
ok \ \ \ \ \ \ \ \
INSTR[31:0] —(1)) 1
MCRR
INMREQ \ [\ [\
PASS / \
LATECANCEL \ /
CHSD[1:0] Y GO (ignored) | Go)
CHSE[1:0] { UasT Y ighored Y
WDATA[31:0
R \ Datat (Rd) | Dataz (Rn)
RDATA[31:0
(MRRC) JCEED) Yodad(

Figure 6-6 ARM9E-S interlocked MCRR

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-13

ARMOE-S Coprocessor Interface

6.7 CDP

CDP instructions normally execute in asingle cycle. Like al the previous cycles,
INMREQ isdriven LOW to signal when aninstructionis entering the Decode stage and
again when it reaches the Execute stage of the pipeline:

. if the coprocessor can accept the instruction for executio®ABS signal is
driven HIGH during the Execute cycle

. if the coprocessor can execute the instruction immediately it dCiM&D[1:0]
with LAST
. if the instruction requires a busy-wait cycle, the coprocessor dZi&D[1:0]

with WAIT and thenCHSE[1:0] with LAST.

Figure 6-7 shows @P which is canceled due to the previous instruction causing a Data

Abort.
LDR with Data Abort (- Execute <@~ Memory <& Exception»r§Exception
entry start continues
CDP: ARM processor pipeline (<@~ Decode <@ Execute -« - g
CDP: Coprocessor pipeline (- Decode >« Execute - Memory - |
(latecancelled)
ck O\ \ \ \ \ [
Wty —— AR ()
INMREQ \ A\ /
PASS / \
LATECANCEL / \
CHSD[1:0] X dast
CHSE[1:0] X ighored
DABORT / _\

Figure 6-7 ARM9E-S late-canceled CDP

6-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

The CDP instruction enters the Execute stage of the pipeline and is signaled to execute
by PASS. In the following cycle LATECANCEL is asserted. This causes the
coprocessor to terminate execution of the CDP instruction and prevents the CDP
instruction from causing state changes to the coprocessor.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 6-15

ARMOE-S Coprocessor Interface

6.8 Privileged instructions

The coprocessor might restrict certain instructions for usein privileged modes only. To
do this, the coprocessor has to track the INTRANS output. Figure 6-8 shows how
INTRANS changes after amode change.

Mode change (- Execute - Execute It Execute I Memory - Write P
(Cycle 2) (Cycle 3)

CDP: ARM processor pipeline (- Decode <@ Decode I« Decode >~ Execute >« Memory >« Write P

ck O\ \ \ \ \ \ \ (-

INSTR[31:0] YcPRTY

mMrea [\ | [\ [
In:;aNos] | Old Mode X New Mode
PASS / \
LATECANCEL \ /
CHSDI[1:0] { ighored Y ighored |\ dasT

CHSE[1:0] X pored)

(=}

Figure 6-8 ARM9E-S privileged instructions

Thefirst two CHSD responses are ignored by the ARM9E-S becauseit isonly the final
CHSD responsg, as the instruction moves from Decode into Execute, that counts. This
allows the coprocessor to change its response as INTRANS/INM changes.

6-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

6.9 Busy-waiting and interrupts

CLK

INSTR[31:0]

INMREQ

PASS

LATECANCEL

CHSDI[1:0]

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of acoprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the Decode stage instruction
drives WAIT onto CHSD[1:0]. When the instruction concerned enters the Execute
stage of the pipeline the coprocessor can drive WAIT onto CHSE[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons, the coprocessor can be interrupted while busy-waiting,
causing the instruction to be abandoned. Abandoning execution is done through PASS.
The coprocessor must monitor the state of PASS during every busy-wait cycle. If itis
HIGH, the instruction must still be executed. If it is LOW, the instruction must be
abandoned. Figure 6-9 shows a busy-waited coprocessor instruction being abandoned
due to an interrupt.

ARM processor pipeline <& Execute P Execute @ Execute P Execute =t Execute <& Exception
(WAIT) (WAIT) (WAIT) Interrupted Entry
Coprocessor pipeline - Decode -~ Execute <@~ Execute > Execute < Execute < Aban- P
(WAIT) (WAIT) (WAIT) (WAIT) doned
(InT\ [\ [\
P/ - -
X AT)
X AIT X AIT X Ighored X Ighored X

CHSE[1:0]

Figure 6-9 ARM9E-S busy waiting and interrupts

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 6-17

ARMOE-S Coprocessor Interface

6.10 Coprocessor 15 MCRs

ARM processor pipeline

CLK

INSTR[31:0]

InMREQ

ISEQ

DnMREQ

DSEQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

WDATA[31:0]
(MCR)

1A[31:1]

DA[31:0]

Coprocessor 15istypically reserved for use asasystem control coprocessor. For an MCR
to coprocessor 15, it is possible to transfer the coprocessor data to the coprocessor on
the | A and DA buses. To do this the coprocessor must drive GO on the coprocessor
handshake signals for anumber of cycles. For each cycle that the coprocessor responds
with GO on the handshake signal's, the coprocessor datais driven ontol A and DA as

shown in Figure 6-10.

(<@ Decode P>« Execute <& Execute P Execute P Memory P Write B
(GO) (GO) (LAST)
\ \ \ \ \ \
< \ [\ [\ [\
./ ./ 7/
MCR
A A [\
\ /[
/ \
/ \
/ \
\ /[
o |
X GO { dasT Y ighored Y
X Coproc Data X
X Instr) Coprpc Data X nstr+4 [)
X Coprpc Data X

Figure 6-10 ARM9E-S coprocessor 15 MCRs

6-18

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

ARMO9E-S Coprocessor Interface

6.11 Connecting coprocessors

A coprocessor in an ARM9E-S system needs to have 32-bit connections to:
. data from memory (instruction stream arit)

. write data from the ARM9E-SVCR)

. read data to the ARM9E-SRC).

6.11.1 Connecting a single coprocessor

An example of how to connect a coprocessor into an ARM9E-S system is shown in
Figure 6-11.

asel

RDATA

0 M
ARMOE-S system

WDATA 1

bsel

CPDIN
CPDOUT

Coprocessor

Figure 6-11 Coprocessor connections
The logic for Figure 6-11 is as follows:

on RI SI NG CLK

asel = not (DnMREQ and DSEQ and (not DnRW
bsel = (not DnMREQ and (not PASS)
csel = DnMREQ and DSEQ

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-19

ARMOE-S Coprocessor Interface

Note
The RDATA enableterm (asel) is specially constructed to select the coprocessor output
dataduring MRC and STC operations. Thisisto allow the connection of the ETM module
to the ARM9E-S RDATA and WDATA buses while still allowing tracing of MRC and
STC data.

6.11.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as
shown in Table 6-2.

Table 6-2 Handshake signal connections

Signal Connection

PASS, LATECANCEL Connect these signals to all coprocessors present in the system.

CHSD, CHSE Combine the individual bit 1 of CHSD, and CHSE by ANDing.
Combine theindividua bit 0 of CHSD, and CH SE by ORing.
Connect the CHSD, and CHSE inputs to the ARM9E-S.

You must also multiplex the output data from the coprocessors.

The handshaking arrangement for a two-coprocessor system is shown in Example 6-1.

Example 6-1

In the case of two coprocessors that have handshaking signals CHSD1, and CHSEL1,
and CHSD2, and CHSE2, respectively, the following connections are made:

ARMDE- S CP1 cP2
CHSD| 1] <= CHSDL[1] ANDCHSD2[1]
CHSD[0] <= CHSD1[0] OR CHSD2][0]
CHSE] 1] <= CHSE1[1] ANDCHSE2[1]
CHSE][0] <= CHSE1[0] OR CHSE2[0]

6-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

ARMO9E-S Coprocessor Interface

6.11.3 No external coprocessor

If you are implementing a system that does not include any external coprocessors, you
must tie both CHSD and CHSE to 10 (ABSENT). Thisindicates that no external
coprocessors are present in the system. If any coprocessor instructions are received,
they causethe processor to take the undefined instruction trap, allowing the coprocessor
instructions to be emulated in software if required.

The coprocessor-specific outputs from the ARM9E-S must be |eft unconnected:
. PASS
. LATECANCEL

6.11.4 Undefined instructions

The ARM9E-S implements full ARMV5TE architecture undefined instruction

handling. This means that any instruction defined inAiRiel Architecture Reference

Manual asUNDEFI NED, automatically causes the ARM9E-S to take the undefined
instruction trap. Any coprocessor instruction that is not accepted by a coprocessor als
results in the ARM9E-S taking the undefined instruction trap.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 6-21

ARMOE-S Coprocessor Interface

6-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 7

Debug Interface and EmbeddedICE-RT

This chapter describes the ARM9E-S debug interface in the following sections:

About the debug interface on page 7-2

Debug systems on page 7-3

Debug interface signals on page 7-9

ARMOE-S core clock domains on page 7-14
Determining the core and system state on page 7-15.

This chapter also describes the ARM9OE-S EmbeddedICE-RT logic in the following
sections:

About Embeddedl CE-RT on page 7-6

Disabling EmbeddedI CE-RT on page 7-8

The debug communications channel on page 7-16
Monitor mode debug on page 7-21.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 7-1

Debug Interface and EmbeddedICE-RT

7.1

7.1.1

7.1.2

About the debug interface

Halt mode

The ARM9E-S debug interface is based on |IEEE Std. 1149.1-1990, Sandard Test
Access Port and Boundary-Scan Architecture. Refer to this standard for an explanation
of the terms used in this chapter and for a description of the TAP controller states.

The ARM9E-S contains hardware extensions for advanced debugging features. These
make it easier to develop application software, operating systems, and the hardware
itself. ARM9E-S supports two modes of debug operation:

. Halt mode

. Monitor mode.

In halt mode debug, the debug extensions allow the core to be forceldbngmstate.

In debug state, the core is stopped and isolated from the rest of the system. This allows
the internal state of the core, and the external state of the system, to be examined while
all other system activity continues as normal. When debug has been completed, the core
and system state can be restored, and program execution resumed.

Monitor mode

On a breakpoint or watchpoint, an Instruction Abort or Data Abort is generated instead
of entering halt mode debug. When used in conjunction with a debug monitor program
activated by the abort exception entry, it is possible to debug the ARM9E-S while
allowing the execution of critical interrupt service routines. The debug monitor program
typically communicates with the debug host over the ARM9E-S debug communication
channel. Monitor mode debug is describe®imnitor mode debug on page 7-21.

7-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

7.2 Debug systems

The ARM9E-S forms one component of a debug system that interfaces from the

high-level debugging performed by the user to the low-level interface supported by the
ARMOE-S. Figure 7-1 shows atypical debug system.

Debug

host Host computer running ARM or third-party toolkit

>

Protocol

For example, Multi-ICE
converter

>

Debug Development system containing ARM9E-S
target

Figure 7-1 Typical debug system

A debug system typically has three parts:
. The debug host

. The protocol converter on page 7-4
. The ARM9E-S on page 7-4 (the debug target).

The debug host and the protocol converter are system-dependent.
7.2.1 The debug host

The debug host is a computer running a software debugger, such as armsd. The debt

host allows you to issue high-level commands such as setting breakpoints or examinin
the contents of memory.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 7-3

Debug Interface and EmbeddedICE-RT

7.2.2 The protocol converter

An interface, such as an RS232 or parallel connection, connects the debug host to the
ARMOE-S development system. The messages broadcast over this connection must be
converted to the interface signals of the ARM9E-S. The protocol converter performs
this conversion.

7.2.3 The ARM9E-S

The ARMO9E-S has hardware extensions that ease debugging at the lowest level. The
debug extensions:

. allow you to stall program execution by the core
. examine the core internal state

. examine the state of the memory system

. resume program execution.

The major blocks of the ARM9E-S are:
ARMOE-S core This is the CPU core, with hardware support for debug.

Embeddedl CE-RT logic

This is a set of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is describAddut
EmbeddedI CE-RT on page 7-6.

TAP controller This controls the action of the scan chains using a JTAG serial
interface.

These blocks are shown in Figure 7-2 on page 7-5.

7-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

ARMOYE-S

EmbeddedICE-RT Scan chain 1 ARMOE-S

core

Scan chain 2 ——
A

A

h J

ARMO9E-S
TAP controller

Figure 7-2 ARM9E-S block diagram

In halt mode debug areguest on one of the external debug interface signals, or on an
internal functional unit known asthe Embeddedl CE-RT logic, forcesthe ARM9E-Sinto
debug state. The events that activate debug are:

. a breakpoint (a given instruction fetch)

. a watchpoint (a data access)

. an external debug request

. scanned debug request (a debug request scanned into the EmbeddedICE-RT del
control register).

The internal state of the ARM9E-S is examined using the JTAG serial interface, that
allows instructions to be serially inserted into the core pipeline without using the
external data bus. So, for example, when in debug stsi@eanultiple (STM can be
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S
registers. This data can be serially shifted out without affecting the rest of the system.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 7-5

Debug Interface and EmbeddedICE-RT

7.3 About EmbeddedICE-RT

The ARM9E-S Embedded| CE-RT logic providesintegrated on-chip debug support for
the ARM9E-S core.

Embedded| CE-RT is programmed serially using the ARM9E-S TAP controller.
Figure 7-3 shows the relationship between the core, Embeddedl CE-RT, and the TAP
controller. It only shows the signals that are pertinent to Embedded| CE-RT.

DBGEXT[1:0]

DBGCOMMRX

DBGCOMMTX

DBGRNG[1:0]

DBGACK _

Processor EmbeddedICE-RT
DBGIEBKPT

A

EDBGRQ

DBGDEWPT

DBGEN

A

DBGTCKEN

DBGTMS

DBGTDI
DBGTDO >

TAP

AAA

CLK

DBGNnTRST

Figure 7-3 The ARM9E-S, TAP controller, and EmbeddedICE-RT

The EmbeddedI CE-RT logic comprises:

. two real-time watchpoint units

. two independent registers, the debug control register and the debug status register
. debug comms channel.

The debug control register and the debug status register provide overall control of
EmbeddedICE-RT operation.

7-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

You can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into EmbeddedI CE-RT match
the values currently appearing on the address bus, data bus, and various control signals.

Note
You can mask any bit so that its value does not affect the comparison.

You can configure each watchpoint unit to be either awatchpoint (monitoring data
accesses) or abreakpoint (monitoring instruction fetches). Watchpoints and breakpoints
can be data-dependent in halt mode debug.

The EmbeddedI CE-RT logic can be configured into a mode of operation where
watchpoints or breakpoints generate Data or Prefetch Aborts respectively. This alows
aReal-Time (RT) debug monitor system to debug the ARM while still alowing critical
fast interrupt requests to be serviced.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 7-7

Debug Interface and EmbeddedICE-RT

7.4

Disabling EmbeddedICE-RT
You can disable Embedded| CE-RT by setting the DBGEN input LOW.

—— Caution
Hard wiring the DBGEN input LOW permanently disables all debug functionality.

When DBGEN is LOW, it inhibits DBGDEWPT, DBGIEBKPT, and EDBGRQ to
the core, and DBGACK from the ARMOE-Sis aways LOW.

7-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

7.5 Debug interface signals

There are four primary external signals associated with the debug interface:

. DBGIEBKPT, DBGDEWPT, andEDBGRQ are system requests for the
ARMOE-S to enter debug state

. DBGACK is used by the ARM9E-S to flag back to the system that it is in debug
state.

7.5.1 Entryinto debug state on breakpoint

An instruction being fetched from memory is sampled at the end of a cycle. To apply a
breakpoint to that instruction, the breakpoint signal must be asserted by the end of the
same cycle. This is shown in Figure 7-4.

F1 D1 E1 M1 W1
F2 D2 E2 M2 w2
Breakpointed instruction FB DB (EB) (MB) (WB)
F3 (D3) (E3) (M3)
(F4) (D4) (E4)
Ddebug Edebug1 Edebug2
ck O\ \ \ \ \ \ \ [
1A[31:1] X X
wstristo) ——{(1 (& A8 {5)
DBGIEBKPT [T\
DBGACK /

Figure 7-4 Breakpoint timing

You can build external logic, such as additional breakpoint comparators, to extend the
breakpoint functionality of the EmbeddedICE-RT logic. You must apply their output to
theDBGIEBKPT input. This signal is ORed with the internally-gener&@eebk point

signal before being applied to the ARM9E-S core control logic.

Note

The timing of theDBGIEBKPT input makes it unlikely that data-dependent external
breakpoints are possible.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 7-9

Debug Interface and EmbeddedICE-RT

7.5.2

Breakpoints

A breakpointed instruction is allowed to enter the Execute stage of the pipeline, but any
state change as aresult of the instruction is prevented. All instructions prior to the
breakpointed instruction complete as normal.

Note

If abreakpointed instruction does not reach the Execute stage, for instance, if an earlier
instruction is abranch, then both the breakpointed instruction and breakpoint status are
discarded and the ARM does not enter debug state.

The Decode cycle of the debug entry sequence occurs during the execute cycle of the
breakpointed instruction. The latched Break point signal forces the processor to start
the debug sequence.

In Figure 7-4 on page 7-9 instruction B is breakpointed. The debug entry sequenceis
initiated when instruction B enters the Execute stage. The ARM completes the debug
entry sequence and asserts DBGACK two cycles later.

and exceptions

A breakpointed instruction can have a Prefetch Abort associated with it. If so, the
Prefetch Abort takes priority and the breakpoint isignored. (If thereisaPrefetch Abort,
instruction data might be invalid, the breakpoint might have been data-dependent, and
as the data might be incorrect, the breakpoint might have been triggered incorrectly.)

SW and undefined instructions are treated in the same way as any other instruction that
can have a breakpoint set on it. Therefore, the breakpoint takes priority over theSW or
undefined instruction.

On an instruction boundary, if there is abreakpointed instruction and an interrupt
(nIRQ or nFIQ), the interrupt is taken and the breakpointed instruction is discarded.
When the interrupt has been serviced, the execution flow is returned to the original
program. This means that the instruction which was previously breakpointed isfetched
again, and if the breakpoint is still set, the processor enters debug state when it reaches
the execute stage of the pipeline.

When the processor has entered debug state, it isimportant that further interrupts do not
affect the instructions executed. For this reason, as soon as the processor enters debug
state, interrupts are disabled, although the state of the | and F bitsin the Program Satus
Register (PSR) are not affected.

7-10

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

7.5.3 Watchpoints

CLK

InMREQ

INSTR[31:0]

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBGDEWPT

DBGACK

F1

D1

Debug Interface and EmbeddedICE-RT

Entry into debug state following a watchpointed memory accessisimprecise. Thisis
necessary because of the nature of the pipeline.

You can build external logic, such as external watchpoint comparators, to extend the
functionality of the EmbeddedI CE-RT logic. You must apply their output to the
DBGDEWRPT input. This signal is ORed with the internally-generated Watchpoint
signal before being applied to the ARM9E-S core control logic.

Note

Thetiming of the DBGDEWPT input makesit unlikely that data-dependent external
watchpoints are possible.

After awatchpointed access, the next instruction in the processor pipelineis aways
allowed to complete execution. Where thisinstruction isasingle-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following awatchpointed load in thiscaseis
shown in Figure 7-5.

E1 M1 w1

Fldr Didr Eldr Midr Widr
FDp DDp EDp MDp WDp
F5 D5 E5 M5 W5
Ddebug Edebug1 Edebug2

JAVEY (N WO [WO [Y (N VY (R S (R VO (R VS (R WY A VY (R VY B W
A\ A\ A A\ A\ A\ 7
—{D &} (bR} (o})) {1} (-
X X
X X
an,
T\

Figure 7-5 Watchpoint entry with data processing instruction

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 7-11

Debug Interface and EmbeddedICE-RT

CLK

InMREQ

IA[31:1]

INSTR[31:0]

DA[31:0]

WDATA[31:0]

RDATA[31:0]

DBGDEWPT

DBGACK

Fldr

Didr
FB

Although instruction 5 enters the Execute stage, it is not executed, and there is no state
update as aresult of thisinstruction.

Once the debugging session is complete, normal continuation involves areturn to
instruction 5, the next instruction in the code sequence which has not yet been executed.

The instruction following the instruction that generated the watchpoint might have
modified the Program Counter (PC). If this happens, it is not possible to determine the
instruction that caused the watchpoint. A timing diagram showing debug entry after a
watchpoint where the next instruction is a branch is shown in Figure 7-6.

Eldr Midr Widr
bB EB MB WB
FT DT ET

Ddebug Edebug1 Edebug2

J VNN (N WY (N W (N VY (N Y (N O (N VO (R VS (N VY (R VO (R VO (R
A\ A\ A\ A\ A\ A\ A\ 7
XX XX XX XX XX XX XX
—{R}) 0 0) (Tt} {Tte} {7ic)
X X
X X
an,
[T\

Figure 7-6 Watchpoint entry with branch

You can always restart the processor. When the processor has entered debug state, the
ARMOE-S core can be interrogated to determine its state. In the case of a watchpoint,
the PC contains a value that is five instructions on from the address of the next
instruction to be executed. Therefore, if on entry to debug state, in ARM state, the
instruction SUB PC, PC, #20 isscanned inand the processor restarted, execution flow
returns to the next instruction in the code sequence.

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

7.5.4 Watchpoints and exceptions

If thereisan abort with the dataaccess aswell as awatchpoint, the watchpoint condition
islatched, the exception entry sequence is performed, and then the processor enters
debug state. If there is an interrupt pending, the ARM9E-S allows the exception entry
seguence to occur and then enters debug state.

7.5.5 Debug request

A debug request can take place through the Embeddedl CE-RT logic or by asserting the
EDBGRQ signal. Therequest isregistered and passed to the processor. Debug request
takes priority over any pending interrupt. Following registering, the core enters debug
state when theinstruction at the Execute stage of the pipeline has completely finished
executing (once Memory and Write stages of the pipeline have completed). While
waiting for the instruction to finish executing, no more instructions are issued to the
Execute stage of the pipeline.

When a debug request occurs, the ARM9E-S enters debug state even if the
Embedded| CE-RT is configured for monitor mode debug.

7.5.6 Actions of the ARM9E-S in debug state

Once the ARM9E-Sisin debug state, both memory interfaces indicate internal cycles.
This allows the rest of the memory system to ignore the ARM9E-S and function as
normal. Because the rest of the system continues operation, the ARM9E-S ignores
aborts and interrupts.

The CFGBIGEND signal must not be changed by the system while in debug state. If it
changes, not only is there a synchronization problem, but the view of the ARM9E-S
seen by the programmer changes without the knowledge of the debugger. ThenRESET
signal must a'so be held stable during debug. If the system applies reset to the
ARMOE-S (nRESET is driven LOW), the state of the ARMO9E-S changes without the
knowledge of the debugger.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 7-13

Debug Interface and EmbeddedICE-RT

7.6 ARMO9E-S core clock domains

The ARM9E-S has asingle clock, CLK, that is qualified by two clock enables:
. CLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatiorCLKEN conditionsCLK to clock the core. When the
ARMOE-S is in debug stat®BGTCKEN conditionsCLK to clock the core.

7.6.1 Clocks and synchronization

If the system and test clocks are asynchronous, they must be synchronized externally to
the ARM9E-S macrocell. The ARM Multi-ICE debug agent directly supports one or
more cores within an ASIC design. To synchronize off-chip debug clocking with the
ARMOE-S macrocell requires a three-stage synchronizer. The off-chip device (for
example, Multi-ICE) issues BCK signal, and waits for theT CK (Returnedl CK)

signal to come back. Synchronization is maintained because the off-chip device does
not progress to the neXCK until afterRTCK is received. Figure 7-7 shows this
synchronization.

TDO] DBGTDO
N
RTCK —T\ DBGTCKEN,,
N ~
M)
TCK N J
> D Q D Q D Q L/
CLK | | m
i [
T™MS TCK synchronizer 5 EN . DBGTMSV s
- g
CLK
TDI N p EN o li_DBGTDI
> >
CLK
Multi-ICE
interface Input sample and hold
pads _ CLK |

Figure 7-7 Clock synchronization

7-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

7.7 Determining the core and system state

When the ARMOE-S is in debug state, you can examine the core and system state by
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the Embeddedl CE-RT debug status register. If bit 4 is HIGH, the core has
entered debug from Thumb state.

For more details about determining the core state, see Determining the core and system
state on page C-18.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 7-15

Debug Interface and EmbeddedICE-RT

7.8 The debug communications channel
The ARM9E-S EmbeddedI CE-RT logic contains a communications channel for
passing information between the target and the host debugger. This isimplemented as
coprocessor 14.
The communications channel comprises:
. a 32-bit wide comms data read register
. a 32-bit wide comms data write register
. a 6-bit wide comms control register for synchronized handshaking between the
processor and the asynchronous debugger.
These registers are located in fixed locations in the EmbeddedICE-RT logic register
map (as shown ieEmbedded| CE-RT logic on page C-28) and are accessed from the
processor usinyCR andVRC instructions to coprocessor 14.
In addition to the comms channel registers, the processor can access a 1-bit debug status
register for use in the monitor mode debug configuration.
7.8.1 Debug comms channel registers
Coprocessor 14 contains 4 registers, allocated as shown in Table 7-1.
Table 7-1 Coprocessor 14 register map
Register name Register Notes
number
Comms channel control Co Read only2
Comms channel dataread C1 For reads
Comms channel datawrite C1 For writes
Comms channel monitor mode debug status Cc2 Read/write
a. You can clear bit 0 of the comms channel control register by writing to it from the debugger
(JTAG) side.
Seen from the debugger, the registers are accessed using the scan chain in the usual way.
Seen from the processor, these registers are accessed using coprocessor register transfer
instructions.
7-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

7.8.2 Debug comms channel control register

The debug comms channel control register is read-only.1 The register controls
synchronized handshaking between the processor and the debugger. The debug comms
channel control register is shown in Figure 7-8.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

0|j1/0/1/0/0|0|0f0O|0O|O|O|O|O/0O|O|O|O|O|0O|O|O|/0O|O|O|0|O0O(O0|O0|O0W|R

Figure 7-8 Debug comms channel control register

The function of each register bit is described below:

Bits 31:28 Contain afixed pattern that denotes the Embedded| CE version
number (in this case 0011).

Bits 27:2 Arereserved.

Bit 1 Denotes if the comms data write register is available (from the

viewpoint of the processor). Seen from the processor, if the
comms data write register is free (W=0), new data can be written.

If the register is not free (W=1), the processor must poll until
W=0.

Seen from the debugger, when W=1, some new data has been
written that can then be scanned out.

Bit 0 Denotesif thereis new datain the comms dataread register. Seen
from the processor, if R=1, thereis some new datathat can be read
using an MRC instruction.

Seen from the debugger, if R=0, the comms data read register is
free, and new data may be placed there through the scan chain. If
R=1, this denotes that data previously placed there through the
scan chain has not been collected by the processor, and so the
debugger must wait.

1. Thecontrol register should be viewed as read-only. However, the debugger can clear the
R bit by performing awrite to the debug comms channel control register. This feature
must not be used under normal circumstances.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 7-17

Debug Interface and EmbeddedICE-RT

You can use the following instructions to access these registers:
MRC pl14, 0, Rd, cO, cO
This returns the debug comms control register into Rd.
MCR p14, 0, Rn, c1, cO
Thiswrites the value in Rn to the comms data write register.
MRC pl4, 0O, Rd, cl1, cO
This returns the debug data read register into Rd.
Note

The Thumb instruction set does not support coprocessor instructions. Therefore, the
processor must bein ARM state before you can access the debug comms channel.

7.8.3 Comms channel monitor mode debug status register

The coprocessor 14 monitor mode debug status register is provided for use by a debug
monitor when the ARMO9E-S is configured into the monitor mode debug mode.

The coprocessor 14 monitor mode debug status register is a 1-bit wide read/write
register having the format shown in Figure 7-9.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

o|o|ojofojojolo|o|olo|ojo/o|o|o/ofojojo|o|o/ofojojo|o|o|0|0|0
DbgAbtbit—‘

Figure 7-9 Coprocessor 14 monitor mode debug status register format

Bit O of the register, the DbgAbt bit, indicates whether the processor took a Prefetch or
Data Abort in the past because of a breakpoint or watchpoint. If the ARM9E-S core
takes a Prefetch Abort as aresult of abreakpoint or watchpoint, then the bit is set. If on
aparticular instruction or datafetch, both the debug abort and external abort signalsare
asserted, the external abort takes priority and the DbgAbt bit is not set. You can read or
write the DbgAbt bit using MRC or MCR instructions.

7-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

A typical useof thishitisby amonitor mode debug aware abort handler. Thisexamines
the DbgAbt bit to determine whether the abort was externally or internally generated. If
the DbgADbt bit is set, the abort handler initiates communication with the debugger over
the comms channel.

7.8.4 Communications using the comms channel

You can send and receive messages using the comms channel. These are described in:
. Sending a message to the debugger
. Receiving a message from the debugger on page 7-20.

Sending a message to the debugger

Before the processor can send a message to the debugger, it must check that the com
data write register is free for use by finding out if the W bit of the debug comms control
register is clear.

The processor reads the debug comms control register to check the status of the W b
. If the W bit is clear, the comms data write register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14
As the data transfer occurs from the processor to the comms data write register, the V
bit is set in the debug comms control register.

The debugger has two options available for reading data from the comms data write
register:

. Poll the debug comms channel control register before reading the comms data
written. If the W bit is set, there is valid data present in the debug comms data
write register. The debugger can then read this data and scan the data out. The
action of reading the data clears the debug comms channel control register W bit
Then the communications process can begin again.

. Poll the comms data write register, obtaining data and valid status. The data
scanned out consists of the contents of the comms data write register (which
might or might not be valid), and a flag that indicates whether the data read is
valid or not. The status flag is present in the Addr[0] bit position of scan chain 2
when the data is scanned out. $es data registers on page C-10 for details of
scan chain 2.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 7-19

Debug Interface and EmbeddedICE-RT

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger pollsthe R bit of the debug comms
control register.

. If the R bit is LOW, the comms data read register is free, and data can be placed
there for the processor to read.

. If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there using the JTAG
interface. The action of this write sets the R bit in the debug comms control register.

The processor polls the debug comms control register. If the R bit is set, there is data
that can be read using an MRC instruction to coprocessor 14. The action of this load
clears the R bit in the debug comms control register. When the debugger polls this
register and sees that the R bit is clear, the data has been taken, and the process can now
be repeated.

7-20

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug Interface and EmbeddedICE-RT

7.9 Monitor mode debug

ARMOE-S contains |ogic that allows the debugging of a system without stopping the
core entirely. Thisallowsthe continued servicing of critical interrupt routineswhilethe
core is being interrogated by the debugger. Setting bit 4 of the debug control register
enables the monitor mode debug features of ARM9E-S. When this bit is set, the
EmbeddedI CE-RT logic is configured so that a breakpoint or watchpoint causes the
ARM to enter abort mode, taking the Prefetch or Data Abort vectors respectively. There
are anumber of restrictions you must be aware of when the ARM is configured for
monitor mode debugging:

. Breakpoints and watchpoints cannot be data-dependent. No support is provided
for use of the range functionality. Breakpoints and watchpoints can only be based
on:

— instruction or data addresses

— external watchpoint conditioneDBGEXTERN)

— User or Privileged mode acceEnTRANS/InTRANS)
— read/write access (watchpoints)

— access size (breakpoinfEBI T, watchpointbMAS[1:0])
— chained comparisons.

. The single-step hardware must not be enabled.
. External breakpoints or watchpoints are not supported.

. The vector catching hardware can be used but must not be configured to catch th
Prefetch or Data Abort exceptions.

. No support is provided to mix halt mode debug and monitor mode debug
functionality.

The fact that an abort has been generated by the monitor mode is recorded in the
monitor mode debug status register in coprocessor 14 (sams channel monitor
mode debug status register on page 7-18).

Because the monitor mode debug bit does not put the ARM9E-S into debug state, it nov
becomes necessary to change the contents of the watchpoint registers while external
memory accesses are taking place, rather than being changed when in debug state. |
the event that the watchpoint registers are written to during an access, all matches frol
the affected watchpoint unit using the register being updated are disabled for the cycl
of the update.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 7-21

Debug Interface and EmbeddedICE-RT

If thereis a possibility of false matches occurring during changes to the watchpoint
registers, caused by old datain some registers and new data in others, then you must:

1. Disablethe watchpoint unit using the control register for that watchpoint unit.
2. Change the other registers.

3. Re-enable the watchpoint unit by rewriting the control register.

7-22 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 8

Instruction Cycle Times

This chapter gives the instruction cycle timings and illustrates interlock conditions
present in the ARM9E-S design. It contains the following sections:

. Instruction cycle count summary on page 8-3

. Introduction to detailed instruction cycle timings on page 8-7
. Branch and ARM branch with link on page 8-8

. Thumb branch with link on page 8-9

. Branch and exchange on page 8-10

. Thumb Branch, Link, and Exchange <immediate> on page 8-11
. Data operations on page 8-12

. MRS on page 8-14

. MSR operations on page 8-15

. Multiply and multiply accumulate on page 8-16

. QADD, QDADD, QSUB, and QDSUB on page 8-20

. Load register on page 8-21

. Soreregister on page 8-26

. Load multiple registers on page 8-27

. Sore multiple registers on page 8-30

. Load double register on page 8-31

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-1

Instruction Cycle Times

Store double register on page 8-32

Data swap on page 8-33

PLD on page 8-35

Software interrupt, undefined instruction, and exception entry on page 8-36
Coprocessor data processing operation on page 8-37

Load coprocessor register (from memory) on page 8-38

Sore coprocessor register (to memory) on page 8-40
Coprocessor register transfer (to ARM) on page 8-42
Coprocessor register transfer (from ARM) on page 8-43
Double coprocessor register transfer (to ARM) on page 8-44
Double coprocessor register transfer (from ARM) on page 8-45
Coprocessor absent on page 8-46

Unexecuted instructions on page 8-47.

8-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.1 Instruction cycle count summary

Table 8-1 shows the key to the other tables in this chapter.

Table 8-1 Key to tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses.
n The number of words transferred in an LDMSTMLDC/STC.
C Coprocessor register transfer cycle (C-cycle).

| Internal cycle (I-cycle).

N Nonsequential cycle (N-cycle).

S Sequential cycle (S-cycle).

Table 8-2 summarizes the ARMOE-S instruction cycle counts and bus activity when
executing the ARM instruction set.

Table 8-2 ARM instruction cycle counts

Instruction Data

Instruction Cycles bus bus Comment

CLz 1 1S u All cases.

DataOp 1 1s 1 Normal case, PC not destination.

DataOp 2 1S+1l 2l With register controlled shift, PC not
destination.

DataOp 3 2S+1N 3l PC destination register.

Data Op 4 2S+IN+1I 4 With register controlled shift, PC destination
register.

LDR 1 1S IN Normal case, not loading PC.

LDR 2 1S+1l IN+1I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock).

LDR 3 1S+2I IN+2I Loaded byte, halfword, or unaligned word used
by following instruction (2-cycle load-use
interlock).

LDR 5 2S+21+1IN IN+4I PC is destination register.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-3

Instruction Cycle Times

Table 8-2 ARM instruction cycle counts (continued)

Instruction Cycles Ibnuss’fruction bDj;a Comment

LDRD 2 1S+1lI IN+1S Normal case.

LDRD 3 1S+2| IN+1S+11 Last loaded word used by following
instruction.

STR 1 1S IN All cases.

STRD 2 1S+l IN+1S All cases.

LDM 2 1S+1lI 1S+1lI Loading 1 register, not the PC.

LDM n 1S+(n-2)I IN+(n-1)S Loading n registers, n > 1, not loading the PC.

LDM n+l 1S+nl IN+(n-1)S+1l1 Loading n registers, n > 1, not loading the PC,
last word loaded used by following instruction.

LDM n+4 2S+IN+(n+1)l IN+(n-1)S+4l Loading n registersincluding the PC, n > 0.

LDM 5 25+21+1N IN+4| Load PC.

ST™M 2 1S+1lI IN+1I Storing 1 register.

STM n 1S+(n-2)I IN+(n-1)S Storing nregisters, n> 1.

SWP 2 1S+1lI 2N Normal case.

SWP 3 1S+2| 2N+1I Loaded word used by following instruction.

PLD 1 1S 1 All cases, DnSPEC asserted.

B, BL, BX, BLX 3 2S+1IN 3l All cases.

SW , Undefined 3 2S+1IN 3l All cases.

Coprocessor absent b+4 2S+1IN+1l+bl 41+bl All cases.

CDP b+1 1S+hl (L+b)l All cases.

LDC, STC b+n 1S+(b+n-1)I bl+IN+(n-1)S All cases.

MCR b+1 1S+bl bl+1C All cases.

MCRR b+2 1S+(b+1)I bl+2C All cases.

MRC b+1 1S+hl bl+1C Normal case.

MRC b+2 1S+(b+1)l (b+1)1+1C Following instruction uses transferred data.

8-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-2 ARM instruction cycle counts (continued)

Instruction Cycles Instruction Data Comment

bus bus

MRC (dest = PC) b+4 1S+(b+3)1 (b+3)1+1C Destination is PC.

MRRC b+2 1S+(b+1)l bl+2C Normal case.

MRRC b+3 1S+(b+2)I (b+1)I+2C Following instruction uses |ast transferred data.

MRS 2 1S+1l 2l All cases.

MSR 1 1S 1 If only flags are updated (mask_f).

MSR 3 1S+2I 3l If any bits other than just the flags are updated
(all masks other than mask_f).

MJL, MLA 2 1S+11 2l Normal case.

MJL, MLA 3 1S+21 3l Following instruction uses the result in its first
Execute cycle or itsfirst Memory cycle. Does
not apply to amultiply accumulate using result
for accumulate operand.

MULS, MLAS 4 1S+31 4 All cases, setsflags.

QADD, QDADD, 1 1S 1 Normal case.

QSUB, Q@OSUB

QADD, QDADD, 2 1S+1l 2l Following instruction uses the result in itsfirst

QSUB, QDSUB Execute cycle.

SMULL, UMULL, 3 1S+21 3l Normal case.

SMLAL, UMLAL

SMULL, UMULL, 4 1S+3l 4 Following instruction uses RdHi result in its

SMLAL, UMLAL first Execute cycle or itsfirst Memory cycle.
Does not apply to a multiply accumulate using
result for accumulate operand.

SMULLS, UMULLS, 5 1S+4l 51 All cases, setsflags.

SMLALS, UMLALS

SMULxyY, SMLAXY 1 1S 1l Normal case.

SMULXy, SMLAXY 2 1S+1l 2l Following instruction uses the result in its first

Execute or its first Memory cycle. Does not
apply to amultiply accumulate using result for
accumul ate operand.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

8-5

Instruction Cycle Times

Table 8-2 ARM instruction cycle counts (continued)

Instruction Cycles Instruction Data Comment

bus bus

SMULWK, SMLAVK 1 1s 1 Normal case.

SMULWK, SMLAVW 2 1S+11 2l Following instruction uses the result in its first
Execute or its first Memory cycle. Does not
apply to a multiply accumulate using result for
accumulate operand.

SMLALXyY 2 1S+l 2l Normal case.

SMLALXY 3 1S+2I 3l Following instruction uses RdHi result inits

first Execute cycle or itsfirst Memory cycle.
Does not apply to a multiply accumulate using
result for accumulate operand.

8-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.2 Introduction to detailed instruction cycle timings

The pipelined architecture of ARM9E-S overlaps the execution of several instructions
in different pipeline stages. The tables in this section show the number of cycles
required by an instruction, once that instruction has reached the Execute stage of the
pipeline. Theinstruction cycle count isthe number of cyclesthat an instruction occupies
the execute stage of the pipeline. The other pipeline stages (Fetch, Decode, Memory,
Writeback) are only occupied for one cycle by any instruction (in this model, interlock
cycles are grouped in with the instruction generating the data that creates the interlock
condition, not the instruction dependent on the data).

The request, address, and control signals on both the instruction and datainterfaces are
pipelined so that they are generated in the cycle before the one to which they apply, and
are shown as such in the following tables.

Theinstruction address, | A[31:1], isincremented for prefetching instructionsin most
cases. The increment varies with the instruction length:

. 4 bytes in ARM state
. 2 bytes in Thumb state.

The letter i is used to indicate the instruction length.

Note
All cycle counts in this chapter assume zero-wait-state memory access. In a system
whereCLKEN is used to add wait states, the cycle counts must be adjusted
accordingly.

Table 8-3 shows the key to the cycle timing tables, Table 8-4 to Table 8-36.

Table 8-3 Key to cycle timing tables

Symbol Meaning

pc The address of the branch instruction.

pc’ The branch target address.

(pc) The memory contents of that address.

i 4 when in ARM state, or 2 when in Thumb state.

- Indicates that the signal is not active, and therefore not valid in this cycle.

A blank entry in the table indicates that the status of the signal is not
determined by the instruction in that cycle. The status of the signal is
determined either by the preceding or succeeding instruction.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-7

Instruction Cycle Times

8.3

Branch and

ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three
cycles:

1

During thefirst cycle, abranch instruction cal cul ates the branch destination while
performing aprefetch from the current PC. This prefetchisperformedinall case,
because by the time the decision to take the branch has been reached, it is already
too late to prevent the prefetch. If the previous instruction requested a data
memory access, the datais transferred in this cycle.

During the second cycle, the ARM9E-S performs a fetch from the branch
destination. If thelink bit is set, thereturn addressto be stored inr14 is calcul ated.

During the third cycle, the ARM9E-S performs a fetch from the destination + i,
refilling the instruction pipeline.

Table 8-4 Branch and ARM branch with link cycle timings

INMREQ, INSTR DA DnMREQ, RDATA/

Cycle 1A ISEQ DSEQ WDATA

1 pc’ N cycle (pc + 2i) - | cycle

2 pc’ +i S cycle (pc) - I cycle -

3 pc’ + 2i Scycle (pc’ +1i) - | cycle -

(pc’ + 2i) -

8-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.4 Thumb branch with link

A Thumb Branch with Link (BL) operation comprises two consecutive Thumb
instructions, and takes four cycles:

1. Thefirstinstruction acts as a simple data operation. It takesasingle cycle to add
the PC to the upper part of the offset, and stores the result in r14. If the previous
instruction reguested a data memory access, the datais transferred in this cycle.

2. Thesecond instruction acts similarly to the ARM BL instruction over three cycles:

a. Duringthefirst cycle, the ARMOE-S calculates the final branch target
address while performing a prefetch from the current PC.

b. During the second cycle, the ARM9E-S performs a fetch from the branch
destination, while calculating the return address to be stored in r14.

c. Duringthethird cycle, the ARMOE-S performs afetch from the destination
+ 2, refilling the instruction pipeline.

Table 8-5 shows the cycle timings of the compl ete operation.

Table 8-5 Thumb branch with link cycle timing

INMREQ, DnMREQ, RDATA/

Cycle 1A ISEQ INSTR DA DSEQ WDATA
1 pc+3i Scycle (pcHi) - | cycle
2 pc’ N cycle (pc+3i) - | cycle -
3 pc'+i S cycle (pc) - I cycle -
4 pc'+i S cycle (pc'+i) - | cycle
(pc'+i) -

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-9

Instruction Cycle Times

8.5

Branch and exchange

A Branch and Exchange (BX), Branch, Link and Exchangeregister (BLX <r egi st er >)
or ARM BLX <i nmedi at e> operation takes three cycles, and is similar to a Branch:

1

During the first cycle, the ARM9E-S extracts the branch destination and the new
core state while performing a prefetch from the current PC. This prefetchis
performed in al cases, because by the time the decision to take the branch has
been reached, it is already too late to prevent the prefetch. In the case of BX and
BLX<r egi st er >, the branch destination new state comes from the register. For
BLX<i mmedi at e> thedestinationiscalculated asaPC offset. The stateisaways
changed. If the previous instruction requested a memory access (and there is no
interlock in the case of BX, BLX <r egi st er >), the dataistransferred in this

cycle.

During the second cycle, the ARM9E-S performs a fetch from the branch
destination, using the new instruction width, dependent on the state that has been
selected. If the link bit is set, the return address to be stored in r14 is calcul ated.

During thethird cycle, the ARM9E-S performs afetch from the destination +2 or
+4 dependent on the new specified state, refilling the instruction pipeline.

Table 8-6 shows the cycle timings, where:

[
t

Is the instruction width before the BX/ BLX instruction.
Is the instruction width after the BX/ BLX instruction.
Isthe state of the ITBIT signal after the BX/ BLX instruction.

Table 8-6 Branch and exchange cycle timing

Cycle 1A

INMREQ, DNnMREQ, RDATA/
ISEQ INSTR ITBIT DA DSEQ WDATA

pc’ N cycle (pc + 2i) t - | cycle

pc’ + 7 S cycle (pc) t - | cycle -

pc'+2i" Scycle (pc’ + ") t - | cycle -

(pc’ + 27) -

8-10

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

8.6 Thumb Branch, Link, and Exchange <immediate>

Instruction Cycle Times

A Thumb Branch, Link, and Exchange immediate (BLX <i nmedi at e>) operation is
similar to a Thumb BL operation. It comprisestwo consecutive Thumb instructions, and

takes four cycles:

1. Thefirstinstruction acts as a simple data operation. It takesasingle cycle to add
the PC to the upper part of the offset, and stores the result in r14. If the previous
instruction reguested a data memory access, the datais transferred in this cycle.

2. Thesecond instruction acts similarly to the ARM BLX instruction:

a. Duringthefirst cycle, the ARM9E-S calculates the final branch target

address while performing a prefetch from the current PC.

b. During the second cycle, the ARM9E-S performs a fetch from the branch
destination, using the new instruction width, dependent on the state that has
been selected. The return address to be stored in r14 is calcul ated.

c. Duringthethird cycle, the ARMOE-S performs afetch from the destination

+ 4, refilling the instruction pipeline.

Table 8-7 shows the cycle timings of the compl ete operation.

Table 8-7 Thumb branch, link and exchange cycle timing

Cycle IA :g'\é'gEQ' INSTR ITBIT DA Bgl\E/ISEQ, \FIQV%Q\TTX
1 pc+3i Scycle (pc+2i) t - | cycle
2 pc’ N cycle (pc+3i) t I cycle -
3 pc'+i S cycle (pc) t - I cycle
4 pc'+2i Scycle (pc'+i) t - | cycle -
(pc'+2i) -
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-11

Instruction Cycle Times

8.7 Data operations

A normal data operation executes in a single execute cycle except where the shift is
determined by the contents of aregister. A normal data operation requires up to two
operands, that are read from the register file onto the A and B buses.

The ALU combines the A bus operand with the (shifted) B bus operand according to
the operation specified in theinstruction. The ARM9E-S pipelinesthisresult and writes
it into the destination register, when required. Compare and test operations do not write
aresult as they only affect the status flags.

An instruction prefetch occurs at the same time as the data operation, and the PC is
incremented.

When aregister specified shift is used, an additional execute cycleisneeded to read the
shifting register operand. The instruction prefetch occurs during this first cycle.

The PC can be one or more of the register operands. When the PC isthe destination, the
external bus activity is affected. When the ARM9E-S writes the result to the PC, the
contents of the instruction pipeline areinvalidated, and the ARM9E- S takes the address
for the next instruction prefetch fromthe ALU rather than theincremented address. The
ARMOE-S refills the instruction pipeline before any further instruction execution takes
place. Exceptions are locked out while the pipelineis refilling.

Note
Shifted register with destination equals PC is not possible in Thumb state.

The data operation cycle timings are shown in Table 8-8.

Table 8-8 Data operation cycle timing

Cycle IA :gl\EﬂgEQ, INSTR DA Bg'\é'QREQ' @%ﬁ\TT"X
Normal 1 pct3i Scycle (pc+2i) - | cycle
(pc+3i) -
dest=pc 1 pc N cycle (pc+2i) - I cycle
2 pc+i S cycle (pch) - I cycle -
3 pc'+2i S cycle (pc'+i) - | cycle -
(pc'+ 2i) -

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-8 Data operation cycle timing (continued)

Cycle IA :g'\EAgEQ’ INSTR DA ggl\élgEQ, G/%AATT‘X
shift(Rs) 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - | cycle -
(pc+3i) -
shift(Rs) 1 pc+3i | cycle (pc+2i) - | cycle
dest=pc 2 pc N cycle - - | cycle -
3 pC+i S cycle (pc) - I cycle -
4 pc'+2i S cycle (pc'+i) - I cycle -
(pc'+2i) -

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-13

Instruction Cycle Times

8.8 MRS

An MRS operation always takes two cycles to execute. The first cycle allows any
pending state changes to the PSR to be made. The second cycle passes the PSR register
through the ALU so that it can be written to the destination register.

Note
The MRS instruction can only be executed when in ARM state.

Table 8-9 shows the MRS cycle timing.

Table 8-9 MRS cycle timing

INMREQ, DnMREQ, RDATA/

Cycle 1A ISEQ INSTR DA DSEQ WDATA

1 pc+3i | cycle (pc+2i) - | cycle

2 pc+3i Scycle - - I cycle -
(pc+3i) -

8-14 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

8.9 MSR operations

Instruction Cycle Times

An VBR operation takes one cycle to execute if it only updates the status flags of the

CPSR, and three cyclesif it updates other parts of the PSR.

Note

MBR instructions can only be executed in ARM state.

Table 8-10 shows the cycle timings for MSR operations.

Table 8-10 MSR cycle timing

Cycle IA :gl\E/IgEQ, INSTR DA Bg'\égEQ’ SVDDAATTAX
MSRflags 1 pct3i Scycle (pc+2i) - | cycle
(pc+3i) -
MSRother 1 pc+3i | cycle (pc+2i) - | cycle
2 pct3i I cycle - - | cycle -
3 pct3i Scycle - - | cycle -
(pc+3i) -
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-15

Instruction Cycle Times

8.10 Multiply and multiply accumulate
The multiply instructions make use of specia hardware that implements integer
multiplication. All cycles except the last areinternal .
During the first (Execute) stage of a multiply instruction, the multiplier and
multiplicand operands are read onto the A and B buses, on which the multiplier unit is
connected. Thefirst stage of the multiplier performs Booth recoding and partial product
summation, using 16 bits of the multiplier operand each cycle.
During the second (Memory) stage of amultiply instruction, the partial product result
from the Execute stage is added with an optiona accumulate term (read onto the C bus)
and a possible feedback term from a previous multiply step for multiplications which
require additional cycles.

Note

In Thumb state, only the MULS and MLAS operations are possible.

8.10.1 Interlocks
The multiply unit in ARM9E-S operates in both the Execute and Memory stage of the
pipeline. Because of this, the multiplier result is not available until the end of the
Memory stage of the pipeline. If the following instruction requires the use of the
multiplier result, then it must be interlocked so that the correct value is available. This
appliesto al instructions that require the multiply result for the first Execute cycle or
first Memory cycle of the instruction except for multiply accumulate instructions using
the previous multiply result as the accumulator operand.
As an example, the following sequence incurs a single-cycle interlock:
MUL ro, rl, r2
SUB r4, r0, r3
The following cycle also incurs a single-cycle interlock:
M.A ro, rl1, r2, r3
STR ro, [r8]
The following example does not incur an interlock:
MLA ro, r1, r2, r0
MLA ro, r3, r4, r0

8-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-11 shows the cycle timing for MUL and M_A instructions with and without

interlocks.
Table 8-11 MUL and MLA cycle timing
Cycle IA :g'\E"SEQ' INSTR DA nggEQ' \F;V%AATQ/
Normal 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - | cycle -
(pc+3i) -
Interlock 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i I cycle - - I cycle -
3 pct3i Scycle - - I cycle -
(pc+3i) -

The MULS and MLAS instructions always take four cycles to execute, and cannot
generate interlocks in following instructions.

Table 8-12 shows the cycle timing for MULS and MLAS instructions.

Table 8-12 MULS and MLAS cycle timing

Cycle 1A :g'\é'gEQ’ INSTR DA Bg'\é'gEQ' @%’:TT':/
1 pc+3i | cycle (pc+2i) - | cycle
2 pc+3i | cycle - - I cycle -
3 pc+3i | cycle - - | cycle -
4 pc+3i Scycle - - | cycle -
(pc+3i) -
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-17

Instruction Cycle Times

Table 8-13 shows the cycle timing for SMULL, UMJLL, SMLAL, and UMLAL instructions
with and without interl ocks.

Table 8-13 SMULL, UMULL, SMLAL, and UMLAL cycle timing

Cycle IA :g'\E"SEQ' INSTR DA Bg'\EAgEQ' \?/%’;TTAA/
Normal 1 pct+3i | cycle (pc+2i) - | cycle
2 pct3i | cycle - - | cycle -
3 pct3i Scycle - - I cycle -
(pc+3i) -
Interlock 1 pc+3i I cycle (pct2i) - | cycle
2 pct3i | cycle - - | cycle -
3 pct3i | cycle - - | cycle -
4 pct3i Scycle - - | cycle -
(pc+3i) -

The SMULLS, UMULLS, SMLALS, and UMLALS instructions always take five cyclesto
execute, and cannot generate interlocks in following instructions.

Table 8-14 shows the cycle timing for the SMULLS, UMULLS, SMLALS, and UMLALS

instructions.
Table 8-14 SMULLS, UMULLS, SMLALS, and UMLALS cycle timing
Cycle 1A :gl\E/IgEQ, INSTR DA Bgl\EAgEQ, SV%AATT':/
1 pc+3i | cycle (pc+2i) | cycle
2 pc+3i | cycle - | cycle -
3 pc+3i | cycle - | cycle -
4 pc+3i | cycle - | cycle -
5 pc+3i Scycle - I cycle -
(pc+3i) -

8-18

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Instruction Cycle Times

Table 8-15 shows the cycle timing for SMULxy, SMLAxy, SMULW, and SM_LAWY
instructions with and without interlocks.

Table 8-15 SMULxy, SMLAxy, SMULWYy, and SMLAWYy cycle timing

Cycle IA :g'\E"SEQ' INSTR DA nggEQ' \F;V%AATTX
Normal 1 pct3i Scycle (pc+2i) - | cycle
b b (pc+3i) b -
Interlock 1 pc+3i I cycle (pc+2i) - I cycle
2 pct3i Scycle - - I cycle -
(pc+3i) -

Table 8-16 shows the cycle timing for SM_ALxy instructions with and without

interlocks.
Table 8-16 SMLALXy cycle timing
Cycle IA :gI\E/IgEQ, INSTR DA Bgl\élQREQ, @%ﬁ\TTAA/
Normal 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - I cycle -
(pc+3i) -
Interlock 1 pc+3i I cycle (pc+2i) - I cycle
2 pct3i I cycle - - I cycle
3 pct3i Scycle - - I cycle
(pc+3i) -

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-19

Instruction Cycle Times

8.11 QADD, QDADD, QSUB, and QDSUB
This class of instructions normally takes one cycle to execute and is only availablein
ARM state.
8.11.1 Interlocks
Theinstructions in this class use both the Execute and Memory stages of the pipeline.
Because of this, the result of an instruction in this class is not available until the end of
the Memory stage of the pipeline. If afollowing instruction requires the use of the
result, then it must be interlocked so that the correct value is available. This appliesto
al instructionsthat requiretheresult for thefirst Execute cycle. Instructionsthat require
the result of a QADD or similar instruction for the first Memory cycle do not incur an
interlock.
As an example, the following sequence incurs a single-cycle interlock:
QADD r0, rl, r2
SUB r4, r0, r3
The following cycle does not incur a single-cycle interlock:
QDSsuUB r0, rl, r2
STR ro, [r8]
The following example does not incur an interlock:
QADD r0, r4, r5
M.A r0, r3, r4, r0
Table 8-17 showsthe cycletiming for QADD, QDADD, QSUB, and QDSUB instructionswith
and without interlocks.
Table 8-17 QADD, QDADD, QSUB, and QDSUB cycle timing
INMREQ, DnMREQ, RDATA/
Cycle 1A ISEQ INSTR DA DSEQ WDATA
Normal 1 pct3i Scycle (pc+2i) - | cycle
(pc+3i) b -
Interlock 1 pc+3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - | cycle
(pc+3i) -
8-20 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.12 Load register

8.12.1 Interlocks

A load register operation typically occupies the Execute stage for one cycle. There
might be a number of cycles before the loaded value is available for later instructions.
A load to the PC occupies the Execute stage for five cycles.

Note
Destination equals PC is not possible in Thumb state.

Theresult of an aligned word load instruction is not available until the end of the
Memory stage of the pipeline. If the following instruction requires the use of this result
then it must be interlocked so that the correct value is available. Thisinterlock is
referred to as a single-cycle load-use interlock.

The following example incurs a single-cycle interlock:

LDR r0, [r1]
ADD r2, r0, r3
ORR r4, r4, r5

The following example does not incur an interlock:

LDR r0, [r1]
ORRr4, r4, r5
ADD r2, r0, r3

Unaligned word loads, load byte (LDRB), and load halfword (L DRH) instructions use the
byte rotate unit in the Write stage of the pipeline. Thisintroduces a two-cycleload-use
interlock, that can affect the two instructions immediately following the load
instruction.

The following example incurs atwo-cycle interlock:

LDRB r0, [r1, #1]
ADD r2, r0, r3
ORRr4, r4, r5

The following example incurs a single-cycle interlock:

LDRB r0, [r1, #1]
ORR r4, r4, r5
ADD r2, r0, r3

Once an interlock has been incurred for one instruction it does not have to be incurred
for alater instruction.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-21

Instruction Cycle Times

For example, the following sequence incurs a two-cycle interlock on the first ADD
instruction, but the second ADD does not incur any interlocks:

LDRB ro, [rl, #1]
ADD r2, r0, r3
ADD r4, r0, r5

A two-cycle interlock refers to the number of unwaited ARM9E-S clock cyclesto
which theinterlock applies. If amulti-cycleinstruction separates aload instruction and
the instruction using the result of the load, then no interlock can apply. The following
example does not incur an interlock:

LDRB ro, [r1]
MUL r6, r7, r8
ADD r4, r0, r5

Thereis no forwarding path from loaded data to the C read port of the register bank,
which is used for the store data of STR and STMinstructions and for the accumulate
operand of multiply accumulate instructions. The result of aload must reach the Write
stage of the pipeline before it can be made available at the C read port, resulting in a
single-cycle load-use interlock from loaded data to the C read port.

The following example incurs asingle-cycle interlock:

LDR ro, [r1]
STR ro, [r2]

The following example also incurs a single-cycle interlock:

LDR ro, [r1]
M.A r2, r3, r4, r0

The following example does not incur an interlock:

LDR ro, [r1]
NOP ** Code to be changed to renpve NOP **
STR ro, [r2]

Most interlock conditions are determined when the instruction being interlocked is still
in the Decode stage of the pipeline. Load multiple and Store multiple instructions can
incur a Decode stage interlock when the base register is not available due to a previous
instruction. Store multiple instructions can also incur an Execute stage interlock when
the first register to be stored is not available due to a previous instruction. Thisis
referred to as a second-cycle interlock.

The following example incurs a single-cycle interlock:

LDR ro, [r1]
STMA 0, {r1-r2}

8-22

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

The following example incurs a second-cycle interlock:

LDR
STM A

ro,

r2, {r0-r1}

Instruction Cycle Times

A second-cycle interlock can be incurred on the first word of data stored by an STM
instruction or during thefirst cycle of aregister controlled shift. The following example
does not incur an interlock:

LDR
STM A

r3,

ro, {r2-r3}

Table 8-18 shows the cycle timing for basic |oad register operations, where:

s Represents the current mode-dependent val ue.
t Iseither 0, whenthe T bit is specified in the instruction (for example
LDRT) or s at all other times.
Table 8-18 Load register operation cycle timing
Cycle IA :gl\E/I(F;EQ, INSTR DA Bg'\EAQREQ’ DnTRANS RDATA
Normal 1 pct3i Scycle (pc+2i) da N cycle t
(pc+3i) (da)
dest=pc 1 pct3i I cycle (pc+2i) da N cycle t
2 pcH3i | cycle - - | cycle S (da)
3 pc N cycle (pc+3i) - I cycle s -
4 pc'+ S cycle (pc) - I cycle S -
5 pc+2i S cycle (pc'+i) - | cycle s -
(pc'+2i) -
Note
Destination equals PC is not possible in Thumb state.
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-23

Instruction Cycle Times

Table 8-19 shows the cycle timing for load operations resulting in simple interlocks.

Table 8-19 Cycle timing for load operations resulting in interlocks

INMREQ, DnMREQ,
Cycle 1A ISEQ INSTR DA DSEQ RDATA
Singlecycle 1 pc+3i | cycle (pc+2i) da N cycle
interlock
pc+3i Scycle - - | cycle (da)
(pc+3i) -
Two-cycle 1 pct3i | cycle (pc+2i) da N cycle
interlock
pc+3i | cycle - - | cycle (da)
3 pct3i Scycle - - | cycle -
(pc+3i) -

With more complicated interlock cases you cannot consider the load instruction in
isolation. Thisis because in these cases the load instruction has vacated the Execute
stage of the pipeline and a later instruction has occupied it.

Table 8-20 shows the one-cycle interlock incurred for the following sequence of
instructions:

LDRB ro, [r1]

NOP
ADD r2, ro, rl
Table 8-20 Example sequence LDRB, NOP and ADD cycle timing
Cycle IA :gl\E/IgEQ, INSTR DA Bg'\E"gEQ' RDATA
LDRB r0, [r1] 1 pct3i Scycle (pc+2i) da Ncycle
NOP 2 pctHdi | cycle (pc+3i) - | cycle (da)
3 pctdi Scycle - - | cycle -
ADDr2,r0,r1 4 pc+5i Scycle (pc+4i) - | cycle -
(pc+5i) -

8-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-21 shows the cycle timing for the following code sequence:

LDRB ro,

[r2]

STMA r3, {r0-r1}

Table 8-21 Example sequence LDRB and STMIA cycle timing

Cycle IA :gl\E/ISEQ, INSTR DA gg'\é'gEQ' RDATA
LDRB r0, [r2] 1 pct3i Scycle (pc+2i) da N cycle
STMIA r3, {r0-r1} 2 pc+4i | cycle (pc+3i) - | cycle (da)
3 pctdi I cycle - r3 N cycle -
4 pc+4i Scycle - r3+4 Scycle ro
(pc+4i) rl
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-25

Instruction Cycle Times

8.13 Store register
A storeregister operation executesin asingle cycle. During the Execute cycle, the store
addressis calculated, and the data to be stored is read onto the C bus.
Table 8-22 shows the cycle timing for a store register operation, where:
S Represents the current mode-dependent value.
t Iseither 0, when the T bit is specified in the instruction (for
example STRT) or sat al other times.
Table 8-22 Store register operation cycle timing
Cycle 1A :gl\E/I(F;EQ, INSTR DA Bg'\E"SEQ' DnTRANS WDATA
1 pc+3i Scycle (pc+2i) da Ncycle t
(pc+3i) Rd
8-26

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.14 Load multiple registers

8.14.1 Interlocks

A load multiple (LDM takes several cycles to execute, depending on the number of
registers transferred and whether the PC isin the list of registers transferred.

1. Duringthefirst cycle, the ARM9E-S calculates the address of thefirst word to be
transferred, while performing an instruction prefetch.

2. During the second and subsequent cycles, ARM9E-S reads the data requested in
the previous cycle and calcul ates the address of the next word to be transferred.
The new value for the base register is calcul ated.

When a Data Abort occurs, the instruction continues to completion. The ARM9E-S
prevents all register writing after the abort. The ARMO9E-S restores the modified base
pointer (which the load activity before the abort occurred might have overwritten).

WhenthePCisinthelist of registersto beloaded, the ARM9E-Sinvalidatesthe current
contents of the instruction pipeline. The PC is always the last register to be loaded, so
an abort at any point prevents the PC from being overwritten.

Note

LDMwith desti nati on = PC cannot be executed in Thumb state. However,
POP{Rl i st, PC} equatestoanLDMwithdestinati on = PC.

An LDMinstruction can cause an interlock if afollowing instruction is dependent on the
last data value transferred. Thisis similar to the interlock cases present with asingle
word register load. There is an exception to this case for asingle-word LDMwhere, due
to the presence of anidle cycle at the end of a single-word LDM no interlock condition
exists.

For example, the foll owing sequence incurs a single-cycle interlock:

LDM A r0, {rl-r2}
ADD r3, r2, r4d

The following sequence incurs a single-cycle interlock:

LDM A r0, {rl-r2}
STR r2, [r3]

The following sequence does not incur an interlock:

LDM A r0, {r1}
STR r1, [r2]

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-27

Instruction Cycle Times

The LDMcycle timings are shown in Table 8-23.

Table 8-23 LDM cycle timing

Cycle IA :gl\E/IgEQ, INSTR DA Bg'\E"gEQ' RDATA
1 register (not PC) 1 pc+3i | cycle (pc+2i) da N cycle
2 pc+3i Scycle - - | cycle (da)
(pc+3i) -
n registers 1 pc+3i | cycle (pc+2i) da N cycle
E:; é)c) 2 pc+3i | cycle - dat++ Scycle (da)
pc+3i | cycle - dat++ Scycle (dat+)
n pc+3i Scycle - dat++ Scycle (dat++)
(pc+3i) (dart+)
1 register 1 pc+3i | cycle (pc+2i) da N cycle
dest=pe 2 pc+3i | cycle - - | cycle (da)
3 pc’ N cycle - - I cycle -
4 pc'+i S cycle (pc) - | cycle -
5 pc'+2i S cycle (pc'+i) - I cycle -
(pc'+2i) -
n registers 1 pc+3i I cycle (pc+2i) da N cycle
(n>1)
(incl pc) 2 pc+3i I cycle - da++ S cycle (da)
pc+3i I cycle - da++ S cycle (da++)
n pc+3i I cycle - da++ S cycle (da++)
n+1 pc+3i | cycle - - | cycle (da++)
n+2 pc’ N cycle - - | cycle -
n+3 pC'+i S cycle (pch) - I cycle -
n+4 pc’+2i S cycle (pc'+i) - I cycle -
(pc'+2i) -
8-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-23 LDM cycle timing (continued)

INMREQ, DnMREQ,
Cycle IA ISEQ INSTR DA DSEQ RDATA
nregisters 1 pc+3i I cycle (pc+2i) da N cycle
(n>1) .
(1 cycleinterlock) 2 pc+3i I cycle - dat+ Scycle (da)
pc+3i | cycle - dat++ Scycle (dat++)
n pc+3i I cycle - dat++ Scycle (dat++)
n+1 pc+3i Scycle - - I cycle (dat+)
(pc+3i) -

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-29

Instruction Cycle Times

8.15 Store multiple registers

Store multiple (STM instructions proceed in a similar fashion as load multiple

instructions.

1. Duringthefirst cycle, the ARMOE-S cal cul ates the address of thefirst word to be
transferred, while performing an instruction prefetch and al so cal cul ating the new
value for the base register.

2. Duringthe second and subsequent cycles, ARM9E-S stores the data requested in
the previous cycle and calcul ates the address of the next word to be transferred.

When a Data Abort occurs, the instruction continues to completion. The ARM9E-S
restores the modified base pointer (which the load activity before the abort occurred

might have overwritten).

The STMcycle timings are shown in Table 8-24.

Table 8-24 STM cycle timing

Cycle IA :gl\E/IgEQ, INSTR DA Bgl\E/IgEQ, WDATA
1 register 1 pct+3i | cycle (pc+2i) da N cycle
2 pct3i Scycle - - | cycle R
(pc+3i) -
nregisters 1 pc+3i | cycle (pc+2i) da N cycle
(n>1) pc+3i | cycle - dat+ Scycle R
pc+3i | cycle - da+t+ Scycle R’
n pc+3i S cycle - da++ Scycle R”
(pc+3i) R™

8-30 Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Instruction Cycle Times

8.16 Load double register

The LDRDinstruction behaves in the same way as an LDMof two registers. Refer to Load
multiple registers on page 8-27 and the appropriate entriesin Table 8-23 on page 8-28.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-31

Instruction Cycle Times

8.17 Store double register

The STRDinstruction behavesin the sameway asan STMof two registers. Refer to Store
multiple registers on page 8-30 and the appropriate entries in Table 8-24 on page 8-30.

8-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

8.18 Data swap

8.18.1 Interlocks

Instruction Cycle Times

A dataswap issimilar to aback-to-back |oad and storeinstruction. Thedataisread from
external memory in the second cycle and the contents of the register are written to the
external memory in the third cycle (which is merged with the first Execute cycle of the
next instruction).

The data swapped can be a byte or word quantity.

The swap operation might be aborted in either the read or the write cycle. An aborted
swap operation does not affect the destination register.

Note
Data swap instructions are not available in Thumb state.

The DLOCK output of ARM9E-Sis driven HIGH for both read and write cyclesto
indicate to the memory system that it is an atomic operation.

A swap operation can cause one and two-cycle interlocksin asimilar fashion to aload
register instruction.

Table 8-25 shows the cycle timing for the basic data swap operation.

Table 8-25 Data swap cycle timing

Cycle IA :gl\E/IgEQ, INSTR DA Bg'\égEQ' RDATA WDATA
Normal pc+3i | cycle (pc+2i) da N cycle
pc+3i Scycle - da N cycle (da) -
(pc+3i) - Rd
1 cycleinterlock pc+3i I cycle (pc+2i) da N cycle
pc+3i | cycle - da N cycle (da) -
pc+3i Scycle - - I cycle - Rd
(pc+3i) - -

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-33

Instruction Cycle Times

Table 8-25 Data swap cycle timing (continued)

Cycle IA :g'l\z"QREQ' INSTR DA Bg'l\z"gEQ' RDATA WDATA
2 cycleinterlock 1 pct3i | cycle (pc+2i) da N cycle
2 pct3i | cycle - da N cycle (da) -
3 pct3i | cycle - - | cycle - Rd
4 pct3i Scycle - - | cycle - -
(pc+3i) - -

8-34

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

8.19 PLD

Instruction Cycle Times

A PLD operation executes in a single cycle. During the Execute cycle, the prefetch
address is calculated and broadcast on DA[31:0]. DnMREQ and DSEQ indicate an
internal cycle, and DnSPEC is asserted.

Table 8-26 shows the cycle timings for PLD instructions.

Table 8-26 PLD operation cycle timing

INMREQ, DnMREQ,
Cycle 1A ISEQ INSTR DA DSEQ RDATA WDATA
1 pct3i Scycle (pct2i) da | cycle

(pc+3i) -

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

8-35

Instruction Cycle Times

8.20 Software interrupt, undefined instruction, and exception entry

Exceptions, software interrupts (SWIs), and undefined instructions force the PC to a
specific value and refill the instruction pipeline from this address:

1. During thefirst cycle, the ARM9E-S constructs the forced address, and a mode
change might take place.

2. During the second cycle, the ARM9E-S performs a fetch from the exception
address. Thereturn addressto be stored inrl14iscalculated. The state of the CPSR
is saved in the relevant SPSR.

3. Duringthethird cycle, the ARM9E-Sperformsafetch from the exception address
+ 4, refilling the instruction pipeline.

The exception entry cycle timings are show in Table 8-27, where:

pc Is one of:
. the address of th&W instruction for SWis

. the address of the instruction following the last one to be executed
before entering the exception for interrupts

. the address of the aborted instruction for Prefetch Aborts

. the address of the instruction following the one that attempted the
aborted data transfer for Data Aborts.

Xn Is the appropriate exception address.

Table 8-27 Exception entry cycle timing

INMREQ, DnMREQ, RDATA/
Cycle 1A ISEQ INTRANS ITBIT INSTR DA DSEQ WDATA
1 Xn N cycle 1 0 - I cycle
2 Xn+4 Scycle 1 0 (Xn) - | cycle -
3 Xn+8 Scycle 1 0 (Xn+4) - I cycle -
(Xn+8) -
Note
The value on thENSTR bus can be unpredictable in the case of Prefetch Abort or Data
Abort entry.

8-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.21 Coprocessor data processing operation
A coprocessor data(CDP) operationisareguest from the ARM9E-Sfor the coprocessor
to initiate some action. There is no need for the coprocessor to complete the action
immediately, but the coprocessor must commit to completion before driving CHSD or
CHSE to LAST.
If the coprocessor cannot perform the requested task, it leaves CHSD at ABSENT.
When the coprocessor is able to perform the task, but cannot commit immediately, the
coprocessor drives CHSD to WAIT, and in subsequent cycles drives CHSE to WAIT
until able to commit, where it drives CHSE to LAST.
An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).
Note
Coprocessor operations are only available in ARM state.
The coprocessor data operation cycle timings are shown in Table 8-28.
Table 8-28 Coprocessor data operation cycle timing
RDATA/
Cycle IA IREQa INSTR DA DREQ® o \1n P° LC! CHSD CHSE
ready LAST
1 pc+3i Scycle (pc+2i) - | cycle 1 0 -
(pc+3i) -
not ready WAIT
1 pc+3i I cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i |l cycle - - | cycle - 1 0 WAIT
n pc+3i | cycle - - | cycle - 1 0 LAST
n+1 pc+3i Scycle - - I cycle - 1 0 -
(pc+3i) -
a IREQ=InMREQ, ISEQ.
b. DREQ =DnMREQ, DSEQ.
c. P=PASS.
d. LC=LATECANCEL.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-37

Instruction Cycle Times

8.22 Load coprocessor register (from memory)

Theload coprocessor (LDC) operation transfersone or morewords of datafrom memory
to a coprocessor.

The coprocessor commits to the transfer only when it is ready to accept the data. The
coprocessor indicatesthat it is ready for the transfer to commence by driving CHSD or
CHSE to GO. The ARM9E-S produces addresses and requests data memory reads on
behalf of the coprocessor, which is expected to accept the data at sequential rates. The
coprocessor is responsible for determining the number of words to be transferred. It
indicates this using the CHSD and CHSE signals, setting the appropriate signal to
LAST in the cycle beforeit isready to initiate the transfer of the last data word.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).

Note
Coprocessor operations are only availablein ARM state.

The load coprocessor register cycle timings are shown in Table 8-29.

Table 8-29 Load coprocessor register cycle timing

Cycle 1A IREQ2 INSTR DA DREQP RDATA Pc¢ LCd CHSD EHS
1register LAST
ready ; i
1 pc+3i Scycle (pct2i) da N cycle 1 0 -
(pc+3i) (da)
1register WAIT
not ready) -
1 pc+3i I cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i I cycle - - I cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 LAST
n+tl pc+3i Scycle - da Ncycle - 1 0 -
(pc+3i) (da)

8-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-29 Load coprocessor register cycle timing (continued)

Cycle 1A IREQ2 INSTR DA DREQP RDATA Pc LCd CHSD CE:HS
m registers GO
(m>1) : :
ready pc+3i | cycle (pc+2i) da N cycle 1 0 GO
2 pc+3i | cycle - dat+ Scycle (da) 1 0 GO
pc+3i | cycle - da++ Scycle (dat++) 1 0 GO
m-1 pc+3i | cycle - da++ Scycle (dat++) 1 0 LAST
pc+3i Scycle - dat+ Scycle (dat++) 1 0 -
(pc+3i) (dat+)
m registers WAIT
(m>1) : :
not ready pc+3i | cycle (pct+2i) - | cycle 1 0 WAIT
pc+3i | cycle - - | cycle - 1 0 WAIT
n pc+3i | cycle - - | cycle - 1 0 GO
n+tl pc+3i | cycle - da Ncycle - 1 0 GO
n+2 pct+3i | cycle - dat+ Scycle (da) 1 0 GO
pc+3i | cycle - da++ Scycle (dat++) 1 0 GO
n+ pc+3i | cycle - dat+ Scycle (dat+) 1 0 LAST
m-1
n+ pc+3i Scycle - dat+ Scycle (dat++) 1 0 -
m
(pc+3i) (dat+)
a IREQ=InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P=PASS.
d. LC=LATECANCEL.
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-39

Instruction Cycle Times

8.23 Store coprocessor register (to memory)

The store coprocessor (STC) operation transfers one or more words of data from a
COprocessor to memory.

The coprocessor commits to the transfer only when it is ready to write the data. The
coprocessor indicatesthat it is ready for the transfer to commence by driving CHSD or
CHSE to GO. The ARM9E-S produces addresses and requests data memory writeson
behalf of the coprocessor, which is expected to produce the data at sequential rates. The
coprocessor is responsible for determining the number of words to be transferred. It
indicates this using the CHSD and CHSE signals, setting the appropriate signal to
LAST in the cycle beforeit isready to initiate the transfer of the last data word.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).

Note
Coprocessor operations are only availablein ARM state.

The store coprocessor register cycle timings are shown in Table 8-30.

Table 8-30 Store coprocessor register cycle timing

Cycle 1A IREQ2 INSTR DA DRQP RDATA pc LCd CHSD CHSE
1 register LAST
ready
1 pct3i Scycle (pct2i) da N cycle 1 0 -
(pc+3i) CPDatal
1register WAIT
not ready
1 pct3i lcycle (pct2i) - | cycle 1 0 WAIT
pct3i lcycle - - I cycle - 1 0 WAIT
n pct3i lcycle - - I cycle - 1 0 LAST
n+1l pct3i Scycle - da Ncycle - 1 0 -
(pc+3i) CPDatal

8-40 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

Table 8-30 Store coprocessor register cycle timing (continued)

Cycle 1A IREQ2 INSTR DA DRQP RDATA pPc LCd CHSD CHSE
m GO
registers) -
(m>1) 1 pc+t3i lcycle (pct2i) da N cycle 1 0 GO
redy et loyde - dat+ Scyde CPDaal 1 0 GO
pc+3i lcycle - dat+ Scycle CPData 1 0 GO
m-1 pct3i lcycle - dat+ Scycle CPDatam-2 1 0 LAST
pc+3i Scycle - dat+ Scycle CPDatam-1 1 0 -
(pc+3i) CPDatam
m WAIT
registers) -
(m>1) 1 pc+3i lcycle (pct2i) - | cycle 1 0 WAIT
not ready pct3i loycle - - loydle - 1 0 WAIT
n pc+3i lcycle - - I cycle - 1 0 GO
n+l pc+3i lcycle - da Ncycle - 1 0 GO
n+2 pc+3i lcycle - dat+ Scycle CPDatal 1 0 GO
pc+3i lcycle - dat+ Scycle CPData 1 0 GO
ntm-1 pc+t3i lcycle - dat+ Scycle CPDatam-2 1 0 LAST
n+m pc+3i Scycle - dat+ Scycle CPDatam-1 1 0 -
(pc+3i) CPDatam
a IREQ=InMREQ, ISEQ.
b. DRQ=DnMREQ, DSEQ.
c. P=PASS.
d. LC=LATECANCEL.
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-41

Instruction Cycle Times

8.24 Coprocessor register transfer (to ARM)

The move from coprocessor (MRC) operation transfers asingle coprocessor register into
the specified ARM register.

Datais transferred over the data bus interface, in a similar fashion to aload register

operation.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).

Note

Coprocessor operations are only availablein ARM state.

The MRC instruction cycle timings are shown in Table 8-31.

Table 8-31 MRC instruction cycle timing

Cycle 1A IREQ2 INSTR DA DREQP RDATA Pc LCd CHSD CHSE
ready LAST
1 pc+3i Scycle (pc+2i) - Ccycle 1 0 -
(pc+3i) CPData
not ready WAIT
1 pc+3i I cycle (pct+2i) - | cycle 1 0 WAIT
pc+3i I cycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 LAST
n+l pc+3i Scycle - - Ccycle - 1 0 -
(pc+3i) CPData
IREQ = InMREQ, I SEQ.
DREQ = DnMREQ, DSEQ.

P =PASS.

aooTo

LC =LATECANCEL.

8-42

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

8.25 Coprocess

Instruction Cycle Times

or register transfer (from ARM)

The move to coprocessor (MCR) operation transfers a specified ARM register to a
COprocessor register.

Datais transferred over the data bus interface, in a similar fashion to a store register
operation.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).

Note
Coprocessor operations are only available in ARM state.

The MCRinstruction cycle timings are shown in Table 8-32.

Table 8-32 MCR instruction cycle timing

Cycle 1A IREQ2 INSTR DA DREQP WDATA Pc LCd CHSD CHSE
ready LAST
1 pc+3i Scycle (pct+2i) - Ccycle 1 0 -
(pc+3i) Rd
not ready WAIT
1 pc+3i I cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i I cycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 LAST
n+tl pc+3i Scycle - - Ccycle - 1 0 -
(pc+3i) Rd
IREQ = INMREQ, ISEQ.
DREQ = DnMREQ, DSEQ.

P =PASS.

aoop

LC =LATECANCEL.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-43

Instruction Cycle Times

8.26 Double coprocessor register transfer (to ARM)

The move double from coprocessor (MRRC) operation transfers two coprocessor
registersinto the specified ARM registers.

Datais transferred over the data bus interface, in a similar fashion to aload register
operation.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).

Note
Coprocessor operations are only availablein ARM state.

The MRRC instruction cycle timings are shown in Table 8-33.

Table 8-33 MRRC instruction cycle timing

Cycle 1A IREQ2 INSTR DA DREQP RDATA pPc LCd CHSD CHSE
ready GO
1 pc+3i I cycle (pc+2i) - Ccycle 1 0 LAST
2 pc+3i Scycle - - Ccycle CPDatal 1 0 -
(pc+3i) CPData2
not ready WAIT
1 pc+3i I cycle (pct+2i) - | cycle 1 0 WAIT
pc+3i | cycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 GO
ntl pc+3i | cycle - - Ccycle - 1 0 LAST
n+2 pc+3i Scycle - - Ccycle CPDatal 1 0 -
(pc+3i) CPData2
a IREQ=InMREQ, ISEQ.
b. DREQ = DnMREQ, DSEQ.
c. P=PASS.
d. LC=LATECANCEL.

8-44

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Instruction Cycle Times

8.27 Double coprocessor register transfer (from ARM)

The move double to coprocessor (MCRR) operation transfers two specified ARM
registers to a coprocessor.

Datais transferred over the data bus interface, in a similar fashion to a store register
operation.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 6-17).

Note
Coprocessor operations are only available in ARM state.

The MCRRinstruction cycle timings are shown in Table 8-34.

Table 8-34 MCRR instruction cycle timing

Cycle 1A IREQ2 INSTR DA DREQP WDATA Pc LCd CHSD CHSE
ready GO
1 pc+3i I cycle (pc+2i) - Ccycle 1 0 LAST
pc+3i Scycle - - Ccycle Rd 1 0 -
(pc+3i) Rn
not ready WAIT
1 pc+3i I cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i I cycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 GO
n+l pc+3i | cycle - - Ccycle - 1 0 LAST
n+2 pc+3i Scycle (pc+3i) - Ccycle Rd 1 0 -
Rn
a IREQ=InMREQ, ISEQ.
b. DREQ =DnMREQ, DSEQ.
c. P=PASS
d. LC=LATECANCEL.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. 8-45

Instruction Cycle Times

8.28 Coprocessor absent

If no coprocessor is able to process a coprocessor instruction, the instruction is treated
as an UNDEFINED instruction. This allows software to emul ate coprocessor
instructions when no hardware coprocessor is present.

Note

By default, CHSD and CHSE must be driven to ABSENT unless the coprocessor
instruction isbeing handled by acoprocessor. Coprocessor operationsareonly available
in ARM state.

The cycle timings for coprocessor absent instructions are shown in Table 8-35.

Table 8-35 Coprocessor absent instruction cycle timing

INST RDATA/

b d
Cycle 1A IREQ2 R DA DREQ WDATA pc LC CHSD CHSE
coproces ABSENT
sor - -
absentin 1 pc+3i lcycle (pct2i) - I cycle 1 0 - -
decode 2 0x4 Ncycle - - I cycle - 0 O - -
3 0x8 Scycle (0x4) - I cycle - 0 0 -
4 0xC Scycle (0x8) - | cycle - 0 0 -
(0xQO) -
coproces WAIT
sor
absentin L pct3i lcycle (pct2i) - | cycle 1 0 WAIT
execute pct3i lcycle - - | cycle - 0 0 WAIT
n pct3i lcycle - - I cycle - 0 0 ABSENT
n+l 0x4 Ncycle - - I cycle - 0 O -
n+2 0x8 Scycle (0x4) - I cycle - 0 O
n+t3 OxC Scycle (0x8) - | cycle - 0 0
((02¢e] -
a IREQ=InMREQ, ISEQ.
b. DREQ =DnMREQ, DSEQ.
c. P=PASS.
d. LC=LATECANCEL.

8-46

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

8.29 Unexecuted instructions

Instruction Cycle Times

When the condition code of any instruction is not met, the instruction is not executed.
An unexecuted instruction takes one cycle.

Table 8-36 shows the instruction cycle timing for an unexecuted instruction.

Table 8-36 Unexecuted instruction cycle timing

INMREQ, DnMREQ, RDATA/

Cycle 1A ISEQ INSTR DA DSEQ WDATA
1 pc + 3i Scycle (pc + 2i) - | cycle
(pc + 3i) -

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 8-47

Instruction Cycle Times

8-48 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Chapter 9
AC Parameters

This chapter givesthe AC timing parameters of the ARM9E-S. It containsthefollowing
sections:

. Timing diagrams on page 9-2
. AC timing parameter definitions on page 9-8.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 9-1

AC Parameters

9.1 Timing diagrams

The timing diagrams in this section are:

Figure 9-1lnstruction memory interface timing

Figure 9-2Data memory interface timing on page 9-3

Figure 9-3Clock enable timing on page 9-3

Figure 9-4Coprocessor interface timing on page 9-4

Figure 9-5Exception and configuration timing on page 9-4
Figure 9-6Debug interface timing on page 9-5

Figure 9-7Interrupt sensitivity status timing on page 9-5
Figure 9-8JTAG interface timing on page 9-6

Figure 9-9DBGSDOUT to DBGTDO relationship on page 9-7.

Instruction memory interface timing parameters are shown in Figure 9-1.

CLK] _ \—
INMREQ,
InVR x TRANS x X
:Towtrans: «—— Tohitrans
IA[31:1] | Address | X:
:Toviaddr= » ¢—— Tohiaddr
INTRANS X
InM[4:0] X Control x
ITBIT <ot » |e— Tohictl
INSTR[31:0]
Tisinstr ——p»| S Tihinstr
IABORT
Tisiabort ——p» S Tihiabort
DBGIEBKPT
Tisiebkpt ——p»| S l— Tihiebkpt

Figure 9-1 Instruction memory interface timing

9-2

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

AC Parameters

Data memory interface timing parameters are shown in Figure 9-2.

CLK J

DnMREQ,

DSEQ,

DMORE, TRANS I X:

DnSPEC :Tovdtrang — » la—— Tohdtrans

DA[31:0])(Address)()(

DnRW. o ovdaddr, — » le— Tohdaddr

DMAS[1:0],

DLOCK, X Control X N

DnTRANS, Tovdctl T

DnM[4:0] N » —» e ohdell

WDATA[31:0] | | e)(
‘Tovwdata; — | |l¢—— Tohwdata

RDATA[31:0]

Tisrdata—p»| 4
- l¢—Tihrdata

DABORT

Tisdabort—p»| |l
| [¢—Tihdabort

DBGDEWPT

Tisdewpt—m| |4
- l¢—Tihdewpt

Figure 9-2 Data memory interface timing

Clock enable timing parameters are shown in Figure 9-3.

cLK _ |
CLKEN | [

Tisclken —p| le—

—> le— Tihclken

Figure 9-3 Clock enable timing

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 9-3

AC Parameters

CLK

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

Coprocessor interface timing parameters are shown in Figure 9-4.

B

B

|

|

_Tovpass
< >

— | |4—— Tohpass

|

|

[

[

T
< ovlate > — le— Tohlate
Tischsd — la—
—» 4— Tihchsd
Tischse —p l—

—» l4— Tihchse

Figure 9-4 Coprocessor interface timing

CLK

nFIQ,
nIRQ

nRESET

CFGBIGEND,
CFGDISLTBIT,
CFGHIVECS

B

Exception and configuration timing parameters are shown in Figure 9-5.

B

|

[

Tisint ——p]

- 4— Tihint

Tisnreset — |

—» l4— Tihnreset

|

[

Tiscfg —p|

—» l4— Tihcfg

Figure 9-5 Exception and configuration timing

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

CLK

DBGACK

DBGRNG[1:0]

DBGRQI

DBGINSTREXEC,
DBGINSTRVALID

DBGCOMMRX,
DBGCOMMTX

DBGEN,
EDBGRQ,
DBGEXT[1:0]

CLK

FIQDIS,
IRQDIS

Debug interface timing parameters are shown in Figure 9-6.

B

AC Parameters

B

_
I I
:Tovdbga%k —»| |l¢— Tohdbgack
I I
:Tovdbgrr]g —» la—— Tohdbgrng
I I
Loy e Tohdograi
I I
ovdbastgl | | Tondbgstat
I I
‘Tovdbgco;rwm —»| le—— Tohdbgcomm
X [
Tisdbgin— s f—
—» a— Tihdbgin

Figure 9-6 Debug interface timing

Sensitive to interrupt timing parameters are shown in Figure 9-7.

N | L

|

[

t4— Tovintdis —|

—» l&— Tohintdis

Figure 9-7 Interrupt sensitivity status timing

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

9-5

AC Parameters

JTAG interface timing parameters are shown in Figure 9-8.

CLK g B

DBGIR[3:0],

DBGSCREG[4:0], | | I
DBGTAPMS[3:0] | Togogen e Tondbgsm
DBGNTDOEN | I
:Tovtdoen= » le—— Tohtdoen
DBGSDIN | I
:Tovsdin > » <«—— Tohsdin
DBGTDO f |
:Tovtdo > » le—— Tohtdo

DBGNTRST
Tisntrst —p| le—
—» 4— Tihntrst
DBGTDI,
DBGTMS X X:
Tistdi —p] -

—» 4— Tihtdi

DBGTCKEN [)(:

Tistcken—| la—
—» 4— Tihtcken

TAPID [[

Tistapid — la—
—»{ |4— Tihtapid

Figure 9-8 JTAG interface timing

9-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

AC Parameters

The relationship between DBGSDOUT and DBGTDO is shown in Figure 9-9.

DBGSDOUT

DBGTDO

Ttdsh ——p»|
Ttdsd ——p»|

Figure 9-9 DBGSDOUT to DBGTDO relationship

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

AC Parameters

9.2 AC timing parameter definitions

Table 9-1 shows target AC parameters. All figures are expressed as percentages of the
CLK period at maximum operating frequency.

Note

Where 0% is given, thisindicates the hold time to clock edge plus the maximum clock
skew for internal clock buffering.

Table 9-1 Target AC timing parameters

Symbol Parameter Min Max
Tcyc CLK cycletime 100% -
Tisclken CLKEN input setup torising CLK 40% -
Tihclken CLKEN input hold from rising CLK - 0%
Tovitrans Rising CLK toinstruction transaction valid - 80%
Tohitrans Instruction transaction hold time from rising CLK >0% -
Toviaddr Rising CLK to|A valid - 80%
Tohiaddr IA hold time from rising CLK >0% -
Tovictl Rising CLK toinstruction control valid - 80%
Tohictl Instruction control hold time from rising CLK >0% -
Tisinstr INSTR input setup to rising CLK 20% -
Tihinstr INSTR input hold from rising CLK - 0%
Tisiabort IABORT input setup to rising CLK 15% -
Tihiabort IABORT input hold from rising CLK - 0%
Tisiebkpt DBGIEBKPT input setup to rising CLK 15% -
Tihiebkpt DBGIEBKPT input hold fromrising CLK - 0%
Tovdtrans Rising CLK to data transaction valid - 70%
Tohdtrans Data transaction hold time from CLK rising >0% -
Tovdaddr Rising CLK to DA valid - 80%

9-8 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

AC Parameters

Table 9-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
Tohdaddr DA hold time from CLK rising >0% -
Tovdctl Rising CLK to data control valid - 70%
Tohdctl Data control hold time from CLK rising >0% -
Tovwdata Rising CLK to WDATA valid - 20%
Tohwdata WDATA hold time from CLK rising >0% -
Tisrdata RDATA input setup to rising CLK 20% -
Tihrdata RDATA input hold from rising CLK - 0%
Tisdabort DABORT input setup torising CLK 15% -
Tihdabort DABORT input hold from rising CLK - 0%
Tisdewpt DBGDEWRPT input setup to rising CLK 15% -
Tihdewpt DBGDEWPT input hold from rising CLK - 0%
Tovintdis Rising CLK to Sensitive to interrupt status valid - 70%
Tohintdis Sensitive to interrupt status hold from CLK rising >0% -
Tovpass Rising CLK to PASSvalid - 40%
Tohpass PASS hold time from CLK rising >0% -
Tovlate Rising CLK to CPLATECANCEL valid - 25%
Tohlate CPLATECANCEL hold from CLK rising >0% -
Tischsd CHSD input setup torising CLK 30% -
Tihchsd CHSD input hold from rising CLK - 0%
Tischse CHSE input setup torising CLK 30% -
Tihchse CHSE input hold from rising CLK - 0%
Tisint Interrupt input setup to rising CLK 15% -
Tihint Interrupt input hold from rising CLK - 0%
Tisnreset NRESET input setup to rising CLK 25% -
Tihnreset NRESET input hold from rising CLK - 0%
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 9-9

AC Parameters

Table 9-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
Tiscfg Configuration input setup to rising CLK 20% -
Tihcfg Configuration input hold from rising CLK - 0%
Tovdbgack CLK rising to DBGACK valid - 60%
Tohdbgack DBGACK hold time from CLK rising >0% -
Tovdbgrng CLK rising to DBGRNG valid - 80%
Tohdbgrng DBGRNG hold time from CLK rising >0% -
Tovdbgrqi CLK rising to DBGRQI valid - 45%
Tohdbgraqi DBGRQI hold time from CLK rising >0% -
Tovdbgstat Rising CLK to debug status valid - 30%
Tohdbgstat Debug status hold from CLK rising >0% -
Tovdbgcomm Rising CLK to comms channel outputs valid - 60%
Tohdbgcomm Comms channel output hold time from rising CLK >0% -
Tisdbgin Debug inputs input setup to rising CLK 35% -
Tihdbgin Debug inputs input hold from rising CLK - 0%
Tovdbgsm CLK rising to debug state valid - 30%
Tohdbgsm Debug state hold from CLK rising >0% -
Tovtdoen CLK rising to DBGNTDOEN valid - 40%
Tohtdoen DBGNTDOEN hold from CLK rising >0% -
Tovsdin CLK rising to DBGSDIN valid - 20%
Tohsdin DBGSDIN hold from CLK rising >0% -
Tovtdo CLK risingto DBGTDO valid - 35%
Tohtdo DBGTDO hold from CLK rising >0% -
Tisntrst DBGNTRST input setup to CLK rising 25% -
Tihntrst DBGNTRST input hold from CLK rising - 0%
Tistdi DBGTDI input setup to CLK rising 25% -

9-10 Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

AC Parameters

Table 9-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
Tihtdi DBGTDI input hold from CLK rising - 0%
Tistcken DBGTCKEN input setup to CLK rising 35% -
Tihtcken DBGTCKEN input hold from CLK rising - 0%
Tistapid TAPID input setup to CLK rising 20% -
Tihtapid TAPID input hold time from CLK rising - 0%
Ttdsd DBGTDO delay from DBGSDOUT changing - -

Ttdsh DBGTDO hold time from DBGSDOUT changing - -

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. 9-11

AC Parameters

9-12 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Appendix A
Signal Descriptions

This appendix lists and describes al the ARM9E-S interface signals. It contains the
following sections:

. Clock interface signals on page A-2

. Instruction memory interface signals on page A-3
. Data memory interface signals on page A-4

. Miscellaneous signals on page A-6

. Coprocessor interface signals on page A-7

. Debug signals on page A-8.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. A-1

Signal Descriptions

A.1 Clock interface signals
The clock interface signals are given in Table A-1.

Table A-1 Clock interface signals

Name Direction Description
CLK Input This clock times all operationsin the ARM9E-S
System clock processor. All outputs change from the rising edge

and all inputs are sampled on therising edge. The
clock can be stretched in either phase. Synchronous
wait states can be added using the CLKEN signal.
Through the use of the DBGTCKEN signd, this
clock aso times debug operations.

CLKEN Input ARMO9E-S can be stalled for integer clock cycles by
Wait-state control driving CLKEN LOW. This signal must be held
HIGH at all other times.

CORECLKENOUT Output The principal state advance signal for the ARM9E-S
core. This output must be connected directly to the
CORECLKENIN input for correct operation. This
signa has been exported from the core to ease buffer
tree insertion from the CORECL K ENIN input. You
must take care when loading and routing the
CORECLKENOUT to CORECLKENIN
connection.

CORECLKENIN Input Thisinput must be connected to the
CORECLKENOUT output.

A-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

A.2

Signal Descriptions

Instruction memory interface signals

The instruction memory interface signals are shown in Table A-2.

Table A-2 Instruction memory interface signals

Name Direction Description

1A[31:1] Output The processor instruction address bus.

Instruction address

IABORT Input Thisisan input that allows the memory system to

Instruction abort tell the processor that the requested instruction
memory access is not allowed.

INSTR[31:0] Input Thisbusis used to transfer instructions between the

Instruction data memory system and the processor.

DBGIEBKPT Input Thisisan input that allows external hardware to

Instruction breakpoint halt the execution of the processor for debug
purposes. If HIGH at the end of an instruction
Fetch it causesthe ARM9E-Sto enter debug stateif
that instruction reaches the Execute stage of the
processor pipeline.

INMREQ Output If LOW at the end the cycle, then the processor

Not instruction requires amemory access during the following

memory request cycle.

InM[4:0] Output These contain the current mode of the processor

Instruction mode and are valid with the address.

INTRANS Output When LOW the processor isin User mode, when

Not memory HIGH the processor isin a privileged mode. This

trandate signal is valid with the address.

ISEQ Output If HIGH at the end of the cycle then any instruction

Instruction Sequentia memory access during the following cycleis
sequential from the last instruction memory access.

ITBIT Output When HIGH the processor isin Thumb state, when

Instruction Thumb bit

LOW the processor isin ARM state. Thissigna is
valid with the address.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

A-3

Signal Descriptions

A.3 Data memory interface signals
The data memory interface signals are shown in Table A-3.

Table A-3 Data memory interface signals

Name Direction Description

DA[31:0] Output The processor data address bus.

Data address

DABORT Input Thisisan input that allows the memory system

Data abort to tell the processor that the requested data
memory accessis not allowed.

RDATA [31:0] Input Thisbusis used to transfer data between the

Read data memory system and the processor during read
cycles (when DnRW is LOW).

WDATA [31: 0] Output Thisbusis used to transfer data between the

Write data memory system and the processor during write

cycles (when DnRW isHIGH).

DBGDEWPT Input Thisisaninput that alows externa hardwareto
Data watchpoint halt the execution of the processor for debug

purposes. If HIGH at the end of a data memory
request cycle, it causes the ARMOE-Sto enter

debug state.
DLOCK Output If HIGH, then any data memory accessin the
Datalock following cycle is locked, and the memory

controller must wait until DLOCK goes LOW
before alowing another device to accessthe

memory.

DMAS[1:0] Output These encode the size of a data memory access

Data memory in the following cycle. A word accessis

access size encoded as 10 (binary), ahalfword access as0l,
and a byte access as 00. The encoding 11 is
reserved.

DMORE Output If HIGH at the end of the cycle, then the data

Datamore memory access in the following cycleis
directly followed by a sequentia data memory
access.

DnMREQ Output If LOW at the end the cycle, then the processor

Not data memory requires a data memory access in the following

request cycle.

A-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Signal Descriptions

Table A-3 Data memory interface signals (continued)

Name Direction Description

DnM[4:0] Output The processor mode that any data memory

Data mode accesses must be performed in. Valid with the
data address.

DnRW Output If LOW at the end of the cycle, then any data

Data not read, write memory access in the following cycleis aread.
If HIGH thenitisawrite.

DnSPEC Output If LOW at the end of the cycle, then the

Not data speculative processor isindicating to the memory system

request that the data stored at the memory location
specified by DA might be required in
subsequent cycles. DnSPEC is a speculative
signal, so the memory system does not have to
perform any action based on DNSPEC unlessit
sees fit. The memory system must return an
abort for a speculative access. DnSPEC is not
asserted in the same cycle as DnM REQ.

DnTRANS Output If LOW at the end of acycle, then any data

Data not memory transate memory access must be performed with User
mode privileges. If HIGH it must have
Supervisor mode privileges.

DSEQ Output If HIGH at the end of the cycle, then any data

Data sequential address

memory access in the following cycleis
sequential from the last data memory access.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. A-5

Signal Descriptions

A.4 Miscellaneous signals

The miscellaneous signals are shown in Table A-4.

Table A-4 Miscellaneous signals

Name Direction Description

nFlQ Input Thisisthe Fast Interrupt Request signal. Thisinputisa

Not fast interrupt synchronous input to the core. It is not synchronized
internally to the core.

nIRQ Input Thisisthe Interrupt Request signal. Thisinputisa

Not interrupt synchronous input to the core. It is not synchronized

request internally to the core.

CFGBIGEND Input When HIGH, the ARM9E-S processor treats bytesin

Big-endian memory as being in big-endian format. WhenitisLOW,

configuration memory istreated aslittle-endian. Thisisa static
configuration signal.

CFGDISLTBIT Input When HIGH, the ARM9E-S disables certain ARMV5T
defined behavior involving loading datato the PC. This
input must be tied LOW for normal operation and full
ARMV5T compatibility. Thisis astatic configuration
signal.

CFGHIVECS Input When LOW, the ARM9E-S exception vectors start at

High vectors address0Ox0000 0000. When HIGH the ARM9E-S

configuration exception vectors start at address Ox FFFF 0000. This
isastatic configuration signal.

NRESET Input This active LOW reset signal is used to start the

Not reset processor from aknown address. Thisisa
level-sensitive asynchronous reset.

FIQDIS Output When HIGH, indicates that the ARM9E-S is insensitive

FIQ disabled to the state of the nFIQ input signal.

IRQDIS Output When HIGH, indicates that the ARM9E-Sis insensitive

IRQ disabled to the state of the nlRQ input signal.

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

A5 Coprocessor interface signals

Signal Descriptions

The coprocessor interface signals are shown in Table A-5.

Table A-5 Coprocessor interface signals

Name Direction Description

PASS Output This signal indicates that there is a coprocessor
instruction in the Execute stage of the pipeline,
and it must be executed.

CHSD[1:Q] Input The handshake signals from the Decode stage of

Coprocessor the pipeline follower of the coprocessor.

handshake decode

CHSE[1:0] Input The handshake signals from the Execute stage of

Coprocessor the pipeline follower of the coprocessor.

handshake execute

LATECANCEL Output If HIGH during the first memory cycle of a

Coprocessor late cancel

coprocessor instruction, then the coprocessor
must cancel the instruction without changing any
internal state. Thissignal isonly asserted in
cycles where the previous instruction accessed
memory and a Data Abort occurred.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. A-7

Signal Descriptions

A.6 Debug signals

The debug signals are shown in Table A-6.

Table A-6 Debug signals

Name Direction Description

DBGIR[3:0] Output These four bits reflect the current instruction loaded

TAP controller into the TAP controller instruction register. These bits

instruction register change when the TAP state machineisin the
UPDATE-IR state.

DBGNTRST Input Thisisthe active LOW reset signa for the

Not test reset Embedded| CE internal state. Thissignd isa
level-sensitive asynchronous reset input.

DBGNTDOEN Output When LOW, this signal denotes that serial datais

Not DBGTDO being driven out on the DBGTDO output.

enable DBGNTDOEN is usualy used as an output enable
foraDBGTDO pin in a packaged part.

DBGSCREG[4:0] Output Thesefive bitsreflect the ID number of the scan chain
currently selected by the TAP Scan Chain Register
controller. These bits change when the TAP state
machine isin the UPDATE-DR state.

DBGSDIN Output Thissigna contains the serial datato be applied to an

Output boundary external scan chain.

scan serial input

data

DBGSDOUT Input Thisisthe serial data out of an external scan chain.

Input boundary When an external boundary scan chain is not

scan serial output connected, thisinput must be tied LOW.

data

DBGTAPSM[3:0] Output This bus reflects the current state of the TAP

TAP controller state controller state machine.

machine

DBGTCKEN Input Synchronous enable for debug logic accessed using
the JTAG interface.

DBGTDI Input Test datainput to the debug logic.

DBGTDO Output Output from the debug logic.

DBGTMS Input Test mode select for the TAP controller.

A-8

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Signal Descriptions

Table A-6 Debug signals (continued)

Name Direction Description

DBGCOMMRX Output When HIGH, this signal denotes that the comms

Communications channel receive buffer contains valid data waiting to

channel receive be read by the ARM9E-S.

DBGCOMMTX Output When HIGH, this signa denotes that the comms

Communications channel transmit buffer is empty.

channel transmit

DBGACK Output When HIGH, indicates that the processor isin debug

Debug state.

acknowledge

DBGEN Input Thisinput signal allows the debug features of the

Debug enable processor to be disabled. This signal must be LOW
when debugging is not required.

DBGRQI Output This signal represents the state of bit 1 of the debug

Internal debug control register that is combined with EDBGRQ and

request presented to the core debug logic.

EDBGRQ Input External debug request. An externa debugger may
force the processor to enter debug state by asserting
thissignal.

DBGEXTI[1:Q] Input This input to the EmbeddedI CE logic allows

EmbeddedI CE breakpoints and watchpoints to be dependent on

external input external conditions.

DBGINSTREXEC Output Instruction executed. Indicates that the instruction in
the Execute stage of the processors pipeline has been
executed.

DBGINSTRVALID Output Instruction valid. Indicates that the instruction in the
Execute stage of the processors pipeline was valid
and has been executed (unless it failed its conditions
codes).

DBGRNG[1:0] Output This output indicates that the corresponding

EmbeddedI CE Embedded| CE watchpoint unit has matched the

Rangeout conditions currently present on the address, data and
control buses. This signal is independent of the state
of the enable control bit of the watchpoint unit.

TAPID[31:0] Input Thisinput specifies the ID code value shifted out on

Boundary scan DBGTDO when the IDCODE instruction is entered

ID code into the TAP controller.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. A-9

Signal Descriptions

Copyright © 2000 ARM Limited. All rights reserved.

ARM DDI 0165B

Appendix B
Differences Between the ARM9E-S and the
ARMOTDMI

This appendix describes the differences between the ARM9E-S and ARM9TDMI
macrocell interfaces. It contains the following sections:

. Interface signals on page B-2

. ATPG scan interface on page B-5

. Timing parameters on page B-6

. ARMO9E-Sdesign considerations on page B-7

. ARMOE-S debugger considerations on page B-9.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. B-1

Differences Between the ARM9E-S and the ARM9TDMI

B.1 Interface signals

The signal names have prefixes that identify groups of functionally-related signals:

CFG Shows configuration inputs (typically hard-wired for an embedded
application).

CP Shows coprocessor expansion interface signals.

DBG Shows scan-based Embedded] CE debug support input or output.

Other signals provide the interface for the system designer, which is primarily
memory-mapped. Table B-1 showsthe ARM9E-S signalswith their ARM9TDMI hard

macrocell equivalent signals.

Table B-1 ARM9E-S signals and ARM9TDMI hard macrocell equivalents

ARMOTDMI hard

ARMOE-S signal Function . Note
macrocell equivalent

CFGBIGEND 1 = big-endian configuration. BIGEND -
0 = little-endian configuration.

CFGDISLTBIT 1 = disable specific ARMV5T behavior. - -
0 = enable (default).

CFGHIVECS 1 = exception vectors start at Ox FFFF 0000. HIVECS -
0 = exception vectors start at 0x0000 0000.

CLK Rising edge master clock. All inputs are sampled on the GCLK a
rising edge of CLK.
All timing dependencies are from the rising edge of CLK.

CLKEN System memory interface clock enable: nWAIT b
1 = advance the coreonrising CLK.
0 = prevent the core advancing on rising CLK.

DA[31:0] 32-bit data address output bus, available in the cycle DA[31:0] c
preceding the memory cycle.

DABORT Data Abort. DABORT d

DBGCOMMRX Embedded| CE communication channel receive buffer full COMMRX -
output.

DBGCOMMTX Embedded| CE communication channel transmit buffer COMMTX -
empty output.

DBGDEWPT External datawatchpoint (tie LOW when not used). DEWPT e

B-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Differences Between the ARM9E-S and the ARM9TDMI

Table B-1 ARM9E-S signals and ARM9TDMI hard macrocell equivalents (continued)

ARM9TDMI hard

ARMOE-S signal Function macrocell equivalent Note
DBGEXT([1:0] EmbeddedI CE EXTERN debug qualifiers (tieLOW when ~ EXTERNO, EXTERN1 -
not required).
DBGIEBKPT External breakpoint (tie LOW when not used). |EBKPT e
DBGINSTREXEC Instruction executed. INSTREXEC -
DBGINSTRVALID Instruction valid. - -
DBGIR[3:0] TAP controller instruction register. IR[3:0] -
DBGnTDOEN TDO enable. nTDOEN f
DBGNnTRST TAP controller reset (asynchronous assertion). NnTRST f
DBGRNGJ1:0] Embedded| CE rangeout qualifier outputs. RANGEOUT], -
RANGEOUTO
DBGRQI Internal status of debug request. DBGROQI g
DBGSCREG[4:0] Scan chain register select. SCREG[4:0] -
DBGSDIN Boundary scan seria datain. SDIN -
DBGSDOUT Boundary scan serial data out. SDOUT -
DBGTAPSM[3:0] TAP controller state machine state. TAPSM[3:0] -
DBGTCKEN Multi-1CE clock input qualifier sampled on therising edge - -
of CLK. Used to qualify CLK to enable the debug
subsystem.
DBGTDI Test data input. TDI f
DBGTDO Test data output. TDO f
DBGTMS Test mode select. TMS f
EDBGRQ External debug request. EDBGRQ h
IA[31:1] 31-bit instruction address output bus, availableinthecycle 1A[31:1] c
preceding the Memory cycle.
INSTR[31:0] Instruction data bus used to transfer instructions between 1D[31:0] -
the memory system and the ARM9E-S.
INMREQ Instruction memory request. INMREQ c
ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. B-3

Differences Between the ARM9E-S and the ARM9TDMI

Table B-1 ARM9E-S signals and ARM9TDMI hard macrocell equivalents (continued)

ARMOE-S signal Function ARMITDMI ha_rd Note
macrocell equivalent

nFlQ Fast interrupt request. nFIQ i
nIRQ Interrupt request. nlRQ i
RDATA[31:0] Datainput bus. DDIN[31:0] i
WDATA[31:0] Data output bus. This busis always driven. DDJ[31:0] j

a CLK isarising edge clock. It isinverted with respect to the GCLK signal used on the ARM9TDMI hard macrocell.

b. CLKEN issampled on therising edge of CLK. The nWAIT signal on the ARM9TDMI hard macrocell must be held
throughout the high phase of GCL K. This means that the address class outputs (I A[31:1], DA[31:0], DnRW, DMAS,
INTRANS, DnTRANS, and ITBIT) can still changein acycleinwhich CLKEN is taken LOW. You must take this
possibility into account when designing a memory system.

¢. All theaddress class signals (IA[31:1], DA[31:0], DnRW, DMAS, INTRANS, DnTRANS, and | TBIT) change on the
rising edge of CLK. In a system with alow-frequency clock this means that the signals can change in the first phase of the
clock cycle. Thisis unlike the ARM9TDMI hard macrocell where they dways change in the last phase of the cycle.

d. The ARM9TDMI featured a combinational path from DABORT to DnMREQ. This path does not exist in ARM9E-S.

e. With ARM9TDMI, the breakpoint and watchpoint inputs had to be asserted in the phase 1 of the cycle following the cyclein
which the data was returned from the memory system. With ARM9E-S, external breakpoints and watchpoints must be
returned in the same cycle as the data.

f. All JTAG signals are synchronousto CLK on the ARMYE-S. There is no asynchronous TCK as on the ARM9TDMI hard
macrocell. An external synchronizing circuit can be used to generate TCL K EN when an asynchronous TCK is required.
However, CLK must be running.

g. TheDBGRQI signal in ARM9TDM I features acombinational input to output path from EDBGRQ. This has been removed
in ARM9E-S.

h. EDBGRQ must be synchronized externally to the macrocell. It is not an asynchronous input as on the ARM9TDMI hard
macrocell.

i. nFIQ and nIRQ are synchronous inputs to the ARM9E-S, and are sampled on the rising edge of CLK. Asynchronous
interrupts are not supported.

j. The ARM9E-S supports only unidirectional data buses, RDATA[31:0], and WDATA[31:0]. When abidirectional busis
required, you must implement external bus combining logic.

B-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Differences Between the ARM9E-S and the ARM9TDMI

B.2 ATPG scan interface

Where automatic scan path is inserted for automatic test pattern generation, three
signals are instantiated on the macrocell interface:

. SCANENABLE is LOW for normal usage, HIGH for scan test
. SCANIN is the serial scan path input
. SCANOUT is the serial scan path output.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. B-5

Differences Between the ARM9E-S and the ARM9TDMI

B.3

Timing parameters

The timing constraints have been adjusted to balance the external timing parameters
with the area of the synthesized core. All inputs are sampled on therising edge of CLK.
The timing diagrams associated with these timing parameters are shown in Timing
diagrams on page 9-2.

The clock enables are sampled on every rising clock edge:

. CLKEN setup time is ikgken, hold time is Tngken-

. DBGTCKEN setup time is ikcken, hold time is Thicken-

All other inputs are sampled on rising edge&bafK when the clock enable is active
HIGH, for example:

. IABORT setup time is iEaport, hold time is Tniaport, WhenCLKEN is active.
. RDATA setup time is ikdata, hold time is Thrgatas WhenCLKEN is active.

. DBGTMS, DBGTDI setup time is ikgi, hold time is Thgi, whenDBGTCKEN
is active.

Outputs are all sampled on the rising edg€bK with the appropriate clock enable
active, for example:

. I A output hold time is Jniaddr, valid time is Bviagar WhenCLKEN is active.

. INMREQ, I SEQ output hold time is dhitrans, valid time is Tyitrans WhenCLK EN
is active.

Similarly, all memory, coprocessor, and debug signal expansion signals are defined with
input setup parameters ofT. , hold parameters ofl.. , output hold parameters of
Toh...and output valid parameters of,T. .

B-6

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Differences Between the ARM9E-S and the ARM9TDMI

B.4 ARMO9E-S design considerations

B.4.1 Master clock

When an ARM9TDMI hard macrocell design is being converted to ARMOE-S, the
following areas require special consideration:

Master clock

JTAG interface timing

Interrupt timing

Address class signal timing on page B-8
Data Aborts on page B-8.

The master clock to the ARM9E-SLK, is inverted with respect 8CLK used on
the ARM9TDMI hard macrocell. The rising edge of the clock is the active edge of the
clock, on which all inputs are sampled.

All outputs are generated safely from the rising edgeldf, with the following

exceptions:

CORECLKENOUT
This signal can change from the rising edg€bK and has a
causal relationship wit€L KEN.

DBGTDO This signal can change from the rising edg€bK and has a

causal relationship witBBGSDOUT.

B.4.2 JTAG interface timing

B.4.3 Interrupt timing

All JTAG signals on the ARM9E-S are synchronous to the master clock @ipkt,
When an external CK is used, use an external synchronizer to the ARM9E-S.

As with all ARM9E-S signals, the interrupt signalsRQ andnFIQ, are sampled on
the rising edge of LK.

When you are converting an ARM9TDMI hard macrocell design whereSheC
signal is asserted LOW, add a synchronizer to the design to synchronize the interrupt
signals before they are applied to the ARM9E-S.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. B-7

Differences Between the ARM9E-S and the ARM9TDMI

B.4.4

B.4.5

Address class signal timing

Data Aborts

The address class outputs (I A[31: 1], DA[31:0], DnRW, DMAS, InTRANS,
DnTRANS, and ITBIT) onthe ARM9E-Sall changein response to the rising edge of
CLK. Thismeansthat they can changein the first phase of the clock in some systems.
When exact compatibility is required, add latches to the outside of the ARM9E-S to
make sure that they can change only in the second phase of the clock.

Becausethe CLKEN signal is sampled only on the rising edge of the clock, the address
class outputs still change in acyclein which CLKEN isLOW. (Thisis similar to the
behavior of I/DnMREQ and I/DSEQ inan ARM9TDMI hard macrocell system, when
await state isinserted using nWAI T.) Make sure that the memory system design takes
this into account.

Also make sure that the correct address is used for the memory cycle, even though
I A/DA[31:0] might have moved on to the address for the next memory cycle.

For further details, refer to Chapter 4 Memory Interface.

The ARM9TDMI featured acombinational path from DABORT to DnMREQ, DSEQ,
and DM ORE. This path does not exist in ARM9E-S. A consequence of this changeis
that, in the case of two back-to-back memory accesses (for example aload followed by
astore), the second accessis not canceled by the ARM processor if thefirst is aborted.
In these situations, the system must ignore the second memory request. For more
details, see DABORT on page 4-18.

B-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Differences Between the ARM9E-S and the ARM9TDMI

B.5 ARMO9E-S debugger considerations

There are anumber of differences between the ARM9TDMI and ARM9E-S that a
JTAG debugger must be aware of::

The EmbeddedICE version number in the debug channel status register is
different. Sedbebug comms channel control register on page 7-17.

From (test) reset, the ARM9E-S is configured into monitor mode debug. A
debugger requiring the ARM processor halt mode debug features must clear the
monitor mode enable bit in the debug control registerC@bag control register

on page C-34.

There are a number of instructions that have different cycle counts on ARM9E-S
to ARMOTDMI. In particular, the MRS instruction always requires two cycles to
execute on ARM9E-S. See Chapténg&ruction Cycle Times for more details on
instruction cycle timing.

The NV condition code cannot be used to provide a convenient single-cycle
non-interlocking\NOP operation. This is due to ARM9E-S implementing the
ARMVS5TE architecture. A special opcodE320 F000 provides a guaranteed
single-cycle, non-interlockinyoP for ARM9E-S. This opcode is using an
UNPREDICTABLE part of the instruction space, so that its behavior cannot be
guaranteed over all ARM variants.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. B-9

Differences Between the ARM9E-S and the ARM9TDMI

B-10 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Appendix C
Debug in depth

This appendix describes in further detail the debug features of the ARM9E-S, and
includes additional information about the EmbeddedlI CE-RT logic. It contains the
following sections:

. Scan chains and JTAG interface on page C-2

. Resetting the TAP controller on page C-5

. Instruction register on page C-6

. Public instructions on page C-7

. Test data registers on page C-10

. ARMOE-S core clock domains on page C-17

. Determining the core and system state on page C-18
. Behavior of the program counter during debug on page C-24
. Priorities and exceptions on page C-27

. EmbeddedI CE-RT logic on page C-28

. Vector catching on page C-39

. Sngle-stepping on page C-40

. Coupling breakpoints and watchpoints on page C-41
. Disabling Embedded| CE-RT on page C-44

. EmbeddedI CE-RT timing on page C-45.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved.

Debug in depth

C.1 Scan chains and JTAG interface

There are two JTAG-style scan chains within the ARM9E-S. These allow debugging
and EmbeddedI CE-RT programming.

The scan chains alow commandsto be serially shifted into the ARM core, allowing the
state of the core and the system to be interrogated. The JTAG interface requires only
five pins on the package.

A JTAG style Test Access Port (TAP) controller controls the scan chains. For further
details of the JTAG specification, refer to IEEE Standard 1149.1 - 1990 Sandard Test
Access Port and Boundary-Scan Architecture.

C.1.1 Debug scan chains

The two scan paths used for debug purposes are referred to as scan chain 1 and scan
chain 2, and are shown in Figure C-1.

ARMOE-S

EmbeddedICE-RT Scan chain 1 ARMSE-S

core

Scan chain 2 ——
A

A

h J

ARMOE-S
TAP controller

Figure C-1 ARM9E-S scan chain arrangements

C-2 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

Scan chain 1

Scan chain 1 isused for debugging the ARM9E-S core when it has entered debug state.
You can useit to:

. inject instructions into the ARM pipeline
. read and write its registers
. perform memory accesses.

Scan chain 2

Scan chain 2 allows access to the EmbeddedICE-RT registers. Redgrdata
registers on page C-10 for details.

C.1.2 TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG stat
machine. Figure C-2 on page C-4 shows the state transitions that occur in the TAP
controller. The state numbers shown in the diagram are output from the ARM9E-S on
the DBGTAPSM[3:0] bits.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. C-3

Debug in depth

Test-Logic-Reset\
OxF -

tms=1

-

Run-Test/Idle
0xC

tms=0 A

Select-DR-Scan Select-IR-Scan

tms=1

A

Update-DR
0x5

tms=0

Figure C-2 Test access port controller state transitions?

1. From |EEE Std 1149.1-1990. Copyright 1999 |EEE. All rights reserved.

C-4 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.2 Resetting the TAP controller

The boundary-scan interface includes a state machine controller called the TAP
controller. To force the TAP controller into the correct state after power-up, you must
apply areset pulseto the DBGnTRST signal:

. to ready the boundary-scan interface for use, d@B&nNTRST LOW, and then
HIGH again

. to prevent the boundary-scan interface from being use®@BBNTRST input
can be tied permanently LOW.

Note
A clock onCLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. This means that the boundary-scan cells do not interce
any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected. When the TAP controller is put into the
SHIFT-DR state, an@LK is pulsed while enabled Y BGTCKEN, the
contents of the ID register are clocked oub>DO.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-5

Debug in depth

C.3 Instruction register
The instruction register is four bitsin length.
There is no parity bit.

The fixed value 0001 isloaded into the instruction register during the CAPTURE-IR
controller state.

C-6 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C4 Public instructions

Instructions are loaded into the TAP state machine by scanning the appropriate bit
pattern for the instruction when the TAP controller isin the SHIFT-IR state, and then
advancing the TAP controller through the UPDATE-IR state.

Table C-1 shows the public instructions.

Table C-1 Public instructions

Instruction Binary code

EXTEST 0000

SAMPLE/PRELOAD 0011

SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
RESTART 0100

In the following descriptions, the ARM9E-S samples DBGTDI and DBGTM Son the
rising edge of CLK with DBGTCKEN HIGH. All output transitionson DBGTDO
occur as aresult of the rising edge of CLK with DBGTCKEN HIGH.

C.4.1 EXTEST (0000)

The EXTEST instruction alows a boundary scan chain to be connected between the
DBGSDIN and DBGSDOUT pins. External logic, based onthe DBGTAPSM,
DBGSCREG, and DBGIR signalsis required to use the EXTEST function for such a
boundary scan chain. Using EXTEST with scan chain 1 or scan chain 2 selected is
UNPREDICTABLE.

C.4.2 SAMPLE/PRELOAD (0011)

You must use thisinstruction to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. Cc-7

Debug in depth

C.4.3 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between DBGTDI and
DBGTDO:

In the CAPTURE-DR state, the fixed valu@0o is loaded into the register.

In the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

Inthe UPDATE-DR state, the scan register of the selected scan chain is connected
betweerDBGTDI andDBGTDO, and remains connected until a subsequent
SCAN_N instruction is issued.

On reset, scan chain 0 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite
length is specified.

C.4.4 INTEST (1100)

The INTEST instruction places the selected scan chain in test mode:

The INTEST instruction connects the selected scan chain beB®@mDI and
DBGTDO.

When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation. For example, in test mode, input
cells select the output of the scan chain to be applied to the core.

In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells, and the value of the data applied from the system logic to
the input scan cells is captured.

In the SHIFT-DR state, the previously-captured test data is shifted out of the scan
chain via theDBGTDO pin, while new test data is shifted in via DBGTDI

pin.

Single-step operation of the core is possible using the INTEST instruction.

C-8

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.45 |IDCODE (1110)

The IDCODE instruction connects the device identification code register (or

ID register) between DBGTDI and DBGTDO. The D register is a32-bit register that
allows the manufacturer, part number, and version of a component to be read through
the TAP. See ARM9E-Sdeviceidentification (ID) code register on page C-10 for details
of the ID register format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells
are placed in their normal (System) mode of operation:

. In the CAPTURE-DR state, the device identification code is captured by the ID
register.

. In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register via tEBBGTDO pin, while data is shifted into the
ID register through thBBGTDI pin.

. In the UPDATE-DR state, the ID register is unaffected.

C.4.6 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between
DBGTDI andDBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells
assume their normal (System) mode of operation. The BYPASS instruction has no
effect on the system pins:

. In the CAPTURE-DR state, a logic 0 is captured in the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass register through
DBGTDI, and shifted out througpBGTDO after a delay of on€LK cycle.
The first bit to shift out is a zero.

. The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

C.4.7 RESTART (0100)

The RESTART instruction is used to restart the processor on exit from debug state. Th
RESTART instruction connects the bypass register bet@8&ir DI andDBGT DO,
and the TAP controller behaves as if the BYPASS instruction has been loaded.

The processor exits debug state when the RUN-TEST/IDLE state is entered.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-9

Debug in depth

C.5 Test dataregisters

There are six test data registers that can be selected to connect betweenDBGTDI and
DBGTDO:

bypass register

ID code register
instruction register
scan path select register
scan chain 1

scan chain 2.

In addition, other scan chains can be added bet8&SDOUT andDBGSDIN, and
selected when in INTEST mode.

In the following descriptions, data is shifted during evebyK cycle when
DBGTCKEN enable is HIGH.

C.5.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path

betweerDBGTDI andDBGTDO.

Length 1 bit.

Operatingmode When the BYPASS instruction, or any undefined instruction, is

the current instruction in the instruction register, serial data is
transferred fronDBGTDI to DBGTDO in the SHIFT-DR state
with a delay of on€LK cycle enabled bip BGTCKEN.

A logic O is loaded from the parallel input of the bypass register in
the CAPTURE-DR state. There is no parallel output from the
bypass register.

C.5.2 ARMOYE-S device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits. The format of the ID register is shown in Figure C-3 on
page C-11.

The 32-bit device identification code is loaded into the register
from the parallel inputs of tHBAPI D[31:0] input pins during the
CAPTURE-DR state.

C-10

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

The recommended generic value for TAPID[31:0] in a base
ARMOE-S implementation is 0x 15900F0F.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

1

Version Part number Manufacturer identity

Figure C-3 ID code register format

Note
|EEE Standard 1149.1 requires that bit O of the ID register be set to 1.

Operatingmode When the IDCODE instruction is current, the ID register is
selected as the seria path between DBGTDI and DBGTDO.

Thereisno parallel output from the ID register.

The 32-hit deviceidentification codeisloaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

C.5.3 Instruction register
Purpose Specifies a TAP instruction.
Length 4 bits.
Operatingmode Inthe SHIFT-IR state, the instruction register is selected as the

serial path between DBGTDI and DBGTDO.

During the CAPTURE-IR state, the binary value b0001 is |oaded
into thisregister. Thisvalueis shifted out during SHIFT-IR (least
significant bit first), while anew instruction is shifted in (least
significant bit first).

During the UPDATE-IR state, the valuein the instruction register
specifies the current instruction.

On reset, IDCODE specifies the current instruction.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-11

Debug in depth

C54

Scan path select register
Purpose
Length

Operating mode

Changes the current active scan chain.
5 bits.

SCAN_N asthe current instruction in the SHIFT-DR state selects
the scan path select register as the seria path between DBGTDI
and DBGTDO.

During the CAPTURE-DR state, the value b10000 is loaded into
this register. This value is shifted out during SHIFT-DR (least
significant bit first), while anew valueis shifted in (least
significant bit first). During the UPDATE-DR state, the value in
the scan path select register selects a scan chain to become the
currently active scan chain. All further instructions such as
INTEST then apply to that scan chain.

The currently selected scan chain changes only when a SCAN_N
instruction is executed, or when areset occurs. On reset, scan
chain 3 is selected as the active scan chain.

The number of the currently-sel ected scan chainisreflected onthe
DBGSCREG][4:0] output bus. You can use the TAP controller to
drive external chainsin addition to those within the ARM9E-S
macrocell. The external scan chain is connected between
DBGSDIN and DBGSDOUT, and must be assigned a number.
The control signals are derived from DBGSCREG[4:0],
DBGIR[4:0], DBGTAPSM[3:0] and the clock, CLK, and clock
enable, DBGTCKEN.

Table C-2 lists the scan chain numbers allocated by ARM.

Table C-2 Scan chain number allocation

Scan chain

Function
number

0 Reserved

1 Debug

2 EmbeddedI CE-RT
programming

C-12

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

Table C-2 Scan chain number allocation (continued)

Scan chain .
Function
number
3 External boundary
scan
4-15 Reserved
16-31 Unassigned

The scan chain present between DBGSDIN and DBGSDOUT is connected between
DBGTDI and DBGTDO whenever scan chain 3 is selected, or when any unassigned
scan chain number is selected. If thereis more than one external scan chain, a
multiplexor must be built externally to apply the desired scan chain output to
DBGSDOUT. The multiplexor can be controlled by decoding DBGSCREG[4:0].

C.5.5 Scanchainsland?2

The scan chains allow serial accessto the core logic and to the Embedded| CE hardware
for programming purposes. Each scan chain cell is ssmple, and comprises a serial
register and amultiplexor. A typical cell isshown in Figure C-4.

Serial data out

A

CLK

Test mode
select

Shift
enable

Serial data in

Figure C-4 Typical scan chain cell

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-13

Debug in depth

The scan cells perform three basic functions:
. capture

. shift

. update.

For input cells, the capture stage involves copying the value of the system input to the
core into the serial register. During shift, this value is output serially. The value applied
to the core from an input cell is either the system input or the contents of the parallel
register (loads from the shift register after UPDATE-DR state) under multiplexor
control.

For output cells, capture involves placing the value of a core output into the serial
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output or the contents of the serial register.

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by current instruction and the state of the
TAP state machine.

Scan chain 1

Purpose Scan chain 1 is used for communication between the debugger and
the ARM9E-S core. It is used to read and write data, and to scan
instructions into the instruction pipeline. The SCAN_N
instruction is used to select scan chain 1.

Length 67 bits.

Scan chain 1 provides serial accesRBATA[31:0] when the core is doing a read, and

to theWDATA[31:0] bus when the core is doing a write. It also provides serial access
to thelNSTR[31:0] bus, and to the control bits, SYSPEED and WPTANDBKPT. For
compatibility with the ARM9TDMI, there is one additional unused bit that must be zero
when writing, and is UNPREDICTABLE when reading.

There are 67 bits in this scan chain, the order being (from serial data in to out):
INSTR[31:0]

SYSPEED

WPTANDBKPT

unused bit

RDATA[31:0] or WDATA[31:0].

o s wnh e

Bit 0 of RDATA or WDATA is therefore the first bit to be shifted out.

C-14

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

Table C-3 shows the bit allocations for scan chain 1.

Table C-3 Scan chain 1 bit order

Bit number Function Type
66 RDATA[(] Bidir
/WDATA[O]
Bidir
35 RDATA[31] Bidir
/WDATA[3]]
34 Unused -
33 WPTANDBKPT Input
32 SY SSPEED Input
31 INSTR[31] Input
Input
0 INSTR[O] Input

The scan chain order isthe same as for the ARM9TDMI. The unused bit isto retain
compatibility with ARM9TDMI.

The two control bits serve the following purposes:

While debugging, the value placed in the SYSSPEED control bit determines
whether the ARM9E-S synchronizes back to system speed before executing the
instruction. Se&ystem speed access on page C-26 for further details.

After the ARM9OE-S has entered debug state, the first time SYSSPEED is
captured and scanned out, its value tells the debugger whether the core has
entered debug state from a breakpoint (SYSSPEED LOW), or a watchpoint
(SYSSPEED HIGH). If the instruction directly following one which causes a
watchpoint has a breakpoint set on it, then the WPTANDBKPT bit is set. This
situation does not affect how to restart the code.

For aread the data value taken from the 32 bits in the scan chain allocated for dat
is used to deliver thRDATA[31:0] value to the core.

When a write is being performed by the processoWDATA[31:0] value is
returned in the data part of the scanned out value.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. C-15

Debug in depth

Scan chain 2

Purpose Scan chain 2 allows access to the Embedded| CE registers. To do
this, scan chain 2 must be selected using the SCAN_N instruction,
and then the TAP controller instruction must be changed to
INTEST.

Length 38 hits.

Scan chain order From DBGTDI to DBGTDO. Read/write, register address bits 4
to 0, data values bits 31 to 0.

No action occurs during CAPTURE-DR.

During SHIFT-DR, adata valueis shifted into the serial register. Bits 32 to 36 specify
the address of the Embedded| CE register to be accessed.

During UPDATE-DR, thisregister is either read or written depending on the value of
bit 37 (0 = read, 1 = write).

C-16 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.6 ARMO9E-S core clock domains

The ARMO9E-S has asingle clock, CLK, that is qualified by two clock enables:
. CLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatiorCL KEN conditionsCLK to clock the core. When the
ARMOE-S is in debug stat®BGTCKEN conditionsCLK to clock the core.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. C-17

Debug in depth

C.7 Determining the core and system state

When the ARMOE-S is in debug state, you can examine the core and system state by
forcing the load and store multiples into the instruction pipeline.

Before examining the core and system state, the debugger must determine whether the
processor entered debug from Thumb state or ARM state by examining bit 4 of the
Embedded| CE-RT debug status register. When bit 4 is HIGH, the core has entered
debug from Thumb state. When bit 4 is LOW the core has entered debug from ARM
state.

C.7.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest method is
for the debugger to force the core back into ARM state. The debugger can then execute
the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb
instructions on the core (with the SY SSPEED bit set LOW):

STR RO, [R1]; Save RO before use
MOV RO, PC ; Copy PCinto RO

STR RO, [R1]; Now save the PCin RO
BX PC ; Junp into ARM state
MOV R8, R8 ; NOP

MOV R8, R8 ; NOP

Note

Because all Thumb instructions are only 16 bits long, the simplest method, when
shifting scan chain 1, isto repeat the instruction. For example, the encoding for BX RO
is0x4700, so when 0x47004700 shiftsinto scan chain 1, the debugger does not have
to keep track of the half of the bus on which the processor expects to read the data.

You can use the sequences of ARM instructions shown in Example C-1 on page C-19
to determine the processor state.

With the processor in the ARM state, typically the first instruction to executeiis:
STM A RO, {RO-R15}

Thisinstruction causes the contents of the registers to appear on the data bus. You can
then sample and shift out these values.

C-18 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

Note

Theuse of r0 asthe baseregister for the STMisonly for illustration, and you can use any
register.

After you have determined the values in the bank of registers available in the current
mode, you might want to access the other banked registers. To do this, you must change
mode. Normally, a mode change can occur only if the coreis aready in a privileged
mode. However, while in debug state, amode change can occur from any modeinto any
other mode.

The debugger must restore the original mode before exiting debug state. For example,
if the debugger has been requested to return the state of the User mode registersand FIQ
mode registers, and debug state is entered in Supervisor mode, the instruction sequence
can be as shown in Example C-1.

Example C-1 Determining the core state

STM A RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, [R0O]; Save CPSR to determ ne current node

BIC RO, Ox1F; Clear node bits

ORR RO, 0x10; Sel ect User node

MSR CPSR, RO; Enter User node

STM A RO, {R13,R14}; Save registers not previously visible
ORR RO, 0x01; Select FIQ node

MSR CPSR, RO; Enter FIQ node

STM A RO, {R8-Rl4}; Save banked FIQ registers

All theseinstructions execute at debug speed. Debug speed is much slower than system
speed. This is because between each core clock, 67 clocks occur in order to shift in an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARM9E-S is fully static. However, you cannot use
this method for determining the state of the rest of the system.

Whilein debug state, you can only scan the following ARM or Thumb instructionsinto
the instruction pipeline for execution:

. all data processing operations

. all load, store, load multiple, and store multiple instructions
. MSR andMRS

. B, BL, andBX.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. C-19

Debug in depth

C.7.2 Determining the system state

To meet the dynamic timing requirements of the memory system, any attempt to access
system state must occur synchronously. Therefore, the ARM9E-S must be forced to
synchronize back to system speed. Bit 32 of scan chain 1, SY SSPEED, controls this.

You can place alegal debug instruction onto the instruction data bus of scan chain 1
with bit 32 (the SY SSPEED bit) LOW. Thisinstruction isthen executed at debug speed.
To execute an instruction at system speed, aNOP (such asMOV RO, RO) must be
scanned in as the next instruction with bit 32 set HIGH.

After the system speed instructions are scanned into the instruction databus and clocked
into the pipeline, the RESTART instruction must beloaded into the TAP controller. This
causes the ARMOE-S automatically to resynchronize back to CLK conditioned with
CLKEN when the TAP controller enters RUN-TEST/IDLE state, and executes the
instruction at system speed. Debug state is reentered once the instruction compl etes
execution, when the processor switches itself back to CLK conditioned with
DBGTCKEN. When the instruction completes, DBGACK is HIGH. At this point
INTEST can be selected in the TAP controller, and debugging can resume.

To determine if a system speed instruction has completed, the debugger must look at
SY SCOMP (bit 3 of the debug status register). The ARM9E-S must access memory
through the data data bus interface, as this access can be stalled indefinitely by
CLKEN. Therefore, the only way to determineif the memory access has completed is
to examine the SY SCOMP bit. When this bit is HIGH, the instruction has completed.

The state of the system memory can befed back to the debug host by using system speed
load multiples and debug speed store multiples.
Instructions that can have the SYSSPEED bit set

There are restrictions on which instructions can have the SY SSPEED bit set. The valid
instructions on which to set this bit are:

. loads
. stores
. load multiple

. store multiple.

When the ARM9E-S returns to debug state after a system speed access, the SYSSPEED
bit is set LOW. The state of this bit gives the debugger information about why the core
entered debug state the first time this scan chain is read.

C-20

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.7.3 Exit from debug state

L eaving debug state involves:

. restoring the internal state of the ARM9E-S

. causing a branch to the next instruction to be executed
. synchronizing back t€LK conditioned withCLKEN.

After restoring the internal state, a branch instruction must be loaded into the pipeline.
SeeBehavior of the program counter during debug on page C-24 for details on
calculating the branch.

The SYSSPEED bit of scan chain 1 forces the ARM9E-S to resynchronize @ddK to
conditioned withCLKEN. The penultimate instruction in the debug sequence is a
branch to the instruction at which execution is to resume. This is scanned in with bit 32
(SYSSPEED) set LOW. The final instruction to be scanned in is a NOP (sNEk as

RO, RO), with bit 32 set HIGH. The core is then clocked to load this instruction into the
pipeline.

Next, the RESTART instruction is selected in the TAP controller. When the state
machine enters the RUN-TEST/IDLE state, the scan chain reverts back to System
mode, and clock resynchronization@a K conditioned withCLKEN occurs within

the ARM9E-S. Normal operation then resumes, with instructions being fetched from
memory.

The delay, waiting until the state machine is in RUN-TEST/IDLE state, allows
conditions to be set up in other devices in a multiprocessor system without taking
immediate effect. Then, when RUN-TEST/IDLE state is entered, all the processors
resume operation simultaneously.

The function oDBGACK is to tell the rest of the system when the ARM9E-S is in
debug state. You can use this signal to inhibit peripherals such as watchdog timers the
have real-time characteristics. Also, you canDB&ACK to mask out memory
accesses that are caused by the debugging process. For example, when the ARM9E-
enters debug state after a breakpoint, the instruction pipeline contains the breakpointe
instruction plus two other instructions that have been prefetched. On entry to debug
state, the pipeline is flushed. So, on exit from debug state, the pipeline must be refillec
to its previous state. Therefore, because of the debugging process, more memory
accesses occur than are normally expected. It is possible, usDB@&#&ECK signal

and a small amount of external logic, for a peripheral which is sensitive to the number
of memory accesses to return the same result with and without debugging.

Note

You can only us®BGACK in such a way using breakpoints. It does not mask the
correct number of memory accesses after a watchpoint.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. Cc-21

Debug in depth

CLK

InMREQ
ISEQ

1A[31:1]

INSTR[31:0]

DBGACK

For example, consider aperipheral that simply countsthe number of instruction fetches.
This device must return the same answer after a program has run both with and without
debugging.

Figure C-5 shows the behavior of the ARM9E-S on exit from debug state.

Internal[Cycles X N X S X S X X

X Ab | Y s [Y iapvs |)

[]
L]
[]
L]
[
L]
[]
L]

Figure C-5 Debug exit sequence

In Figure C-6 on page C-23, you can see that two instructions are fetched after the
instruction which breakpoints. Figure C-5 shows that DBGACK masks the first three
instruction fetches out of the debug state, corresponding to the breakpoint instruction,
and the two instructions prefetched after it.

Under some circumstances DBGACK can remain HIGH for more than three
instruction fetches. Therefore, if you require precise instruction access counting, you
must provide some external logic to generate amodified DBGACK that alwaysfalls
after three instruction fetches.

Note
When system speed accesses occur, DBGACK remains HIGH throughout. It then falls
after the system speed memory accesses are completed, and finally rises again as the
processor reenters debug state. Therefore, DBGACK masks all system speed memory
accesses.

C-22

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

CLK

InMREQ
ISEQ

1A[31:1]

INSTR[31:0]

DBGIEBKPT

DBGACK

Debug in depth

A \ \ \ \ \ [
Memory Cycles X Internal Cycles
X X X X
{[) {[) {1) {2) {3)
/ I\
/7

Figure C-6 Debug state entry

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

C-23

Debug in depth

C.8 Behavior of the program counter during debug

The debugger must keep track of what happens to the PC, so that you can force the
ARMO9E-Sto branch back to the place at which program flow was interrupted by debug.
Program flow can be interrupted by any of the following:

. a breakpoint

. a watchpoint

. a watchpoint when another exception occurs
. a debug request

. a system speed access.

C.8.1 Breakpoints

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address (4 bytes). The normal way to exit from debug state after
a breakpoint is to remove the breakpoint and branch back to the previously breakpointed
address.

For example, if the ARM9E-S entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of seven addresses
must occur (four for debug entry, plus two for the instructions, plus one for the final
branch). The following sequence shows ARM instructions scanned into scan chain 1.
This is theMost Sgnificant Bit (MSB) first, so the first digit represents the value to be
scanned into the SYSSPEED bit, followed by the instruction.

0 EAFFFFF9 ; B -7 addresses (two’'s complement)
1 E1A00000 ; NOP (MOV RO, R0), SYSSPEED bit is set

After the ARMOE-S enters debug state, it must execute a minimum of two instructions
beforethe branch, although these can both be NOPs (MOV R0, RO). For small branches,
you can replace the final branch with a subtract, with the PC as the destination (SUB
PC, PC, #28 inthe above example).

C.8.2 Watchpoints

To return to program execution after entry to debug state from a watchpoint, use the
same procedure described in Breakpoints.

Debug entry adds four addressesto the PC, and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has
executed, and the program must return to the next instruction.

C-24 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.8.3 Watchpoint with another exception

If awatchpointed access also has a Data Abort returned, the ARM9E-S enters debug
statein Abort mode. Entry into debug isheld off until the core changesinto Abort mode,
and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM9E-S enters debug state in the mode of the
exception. The debugger must check to see if an exception has occurred by examining
the current and previous mode (in the CPSR and SPSR), and the value of the PC. When
an exception has taken place, you must be given the choice of servicing the exception
before debugging.

For example, suppose that an abort has occurred on a watchpointed access and ten
instructions have been executed in debug state. You can use the following sequence to
return to program execution:

0 EAFFFFF1; B -15 addresses (two's complement)
1 E1A00000; NOP (MOV RO, R0), SYSSPEED bit is set

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort and watchpoint is
refetched and executed. Thistriggers the watchpoint again, and the ARM9E-S reenters
debug state.

C.8.4 Watchpoint and breakpoint

It is possible to have awatchpoint and breakpoint condition occurring simultaneously.
This can happen when an instruction causes awatchpoint, and thefollowing instruction
has been breakpointed. You must perform the same calculation as for Breakpoints on
page C-24 to determine whereto resume. Inthiscase, it is at the breakpoint instruction,
because this has not been executed.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-25

Debug in depth

C.8.5 Debug request

Entry into debug state through a debug request is similar to abreakpoint. Entry to debug
state adds four addresses to the PC, and every instruction executed in debug state adds
one address.

For example, the following sequence handles a situation in which the user has invoked
a debug regquest, and then decides to return to program execution immediately:

0 EAFFFFFB; B -5 addresses (2's complement)
1 E1A00000; NOP (MOV RO, R0), SYSSPEED bhit is set

This code restores the PC, and restarts the program from the next instruction.

C.8.6 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by five addresses. System speed instructions access the memory system, and
so it is possible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM9E-S enters Abort mode before returning to debug state.

This scenario issimilar to an aborted watchpoint, but the problem is much harder to fix
because the abort is not caused by an instruction in the main program, and so the PC
does not point to theinstruction that caused the abort. An abort handler usually looks at
the PC to determine the instruction that caused the abort, and the abort address. In this
case, the value of the PC isinvalid, but because the debugger can determine which
location was being accessed, you can write the debugger to help the abort handler fix
the memory system.

C.8.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:
-(4+N+5S)

where Nis the number of debug speed instructions executed (including the final
branch), and S is the number of system speed instructions executed.

C-26

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.9 Priorities and exceptions

When a breakpoint or a debug request occurs, the normal flow of the programis
interrupted. Therefore you can treat debug as another type of exception. Theinteraction
of the debugger with other exceptionsis described in Behavior of the program counter
during debug on page C-24. This section covers the priorities.

C.9.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an
access is made to avirtual address that does not physically exist, and the returned data
isthereforeinvalid. In such acase, the normal action of the operating system isto swap
in the page of memory, and to return to the previously invalid address. Thistime, when
theinstruction is fetched, and providing the breakpoint is activated (it might be
data-dependent), the ARM9E-S enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

C.9.2 Interrupts
When the ARM9E-S enters debug state, interrupts are automatically disabled.

If an interrupt is pending during the instruction prior to entering debug state, the
ARMO9E-S enters debug state in the mode of the interrupt. On entry to debug state, the
debugger cannot assume that the ARM9E-S isin the mode expected by your program.
The ARM9E-S must check the PC, the CPSR, and the SPSR to determine accurately the
reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM9E-S does
recognize that an interrupt has occurred.
C.9.3 Data Aborts

When a Data Abort occurs on awatchpointed access, the ARM9E-S enters debug state
in Abort mode. The watchpoint, therefore, has higher priority than the abort, but the
ARMOE-S remembers that the abort happened.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. Cc-27

Debug in depth

C.10 EmbeddedICE-RT logic

The EmbeddedI CE-RT logicisintegral to the ARM9E-S processor core. It has two
hardware breakpoint or watchpoint units, each of which can be configured to monitor
either the instruction memory interface or the data memory interface. Each watchpoint
unit has registersthat set the address, data, and control fields for both values and masks.
The registers used are shown in Table C-4.

Because the ARM9E-S processor core has a Harvard Architecture, you must specify
whether the watchpoint unit examines the instruction or the data interface. Thisis
specified by bit 3 of the control value register:

. when bit 3 is set, the data interface is examined

. when bit 3 is clear, the instruction interface is examined.

There cannot be @on't carecase for this bit because the comparators cannot compare
the val ues on both buses simultaneously. Therefore, bit 3 of the control mask register is
always clear and cannot be programmed HIGH. Bit 3 also determines whether the
internal IBREAKPT or DWPT signal must be driven by the result of the comparison.
Figure C-7 on page C-30 gives an overview of the operation of the Embeddedl CE-RT
logic.

The ARM9E-S Embedded| CE-RT logic has dedicated hardware that alows
single-stepping through code. This reduces the work required by an external debugger,
and removes the need to flush the instruction cache. There is also hardware to allow
efficient trapping of accesses to the exception vectors. These blocks of logic free the
two general-purpose hardware breakpoint or watchpoint units for use by the
programmer at all times.

The general arrangement of the EmbeddedI CE-RT logic is shown in Figure C-7 on
page C-30.

C.10.1 Register map
The Embedded| CE-RT logic register map is shown in Table C-4.

Table C-4 ARM9E-S EmbeddedICE-RT logic register map

Address Width Function Type
00000 6 Debug control Read/write
00001 5 Debug status Read-only
00010 8 Vector catch control Read/write
00100 6 Debug comms control Read-onlya

C-28 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

C.10.2 Programming and reading EmbeddedICE-RT logic registers

Debug in depth

Table C-4 ARM9E-S EmbeddedICE-RT logic register map (continued)

Address Width Function Type

00101 32 Debug comms data Read/write
01000 32 Watchpoint 0 address value Read/write
01001 32 Watchpoint 0 address mask Read/write
01010 32 Watchpoint 0 data value Read/write
01011 32 Watchpoint 0 data mask Read/write
01100 9 Watchpoint 0 control value Read/write
01101 8 Watchpoint O control mask Read/write
10000 32 Watchpoint 1 address value Read/write
10001 32 Watchpoint 1 address mask Read/write
10010 32 Watchpoint 1 data value Read/write
10011 32 Watchpoint 1 data mask Read/write
10100 9 Watchpoint 1 control value Read/write
10101 8 Watchpoint 1 control mask Read/write

a. An attempted write to the comms channel control register can be used to reset bit 0 of that

register.

An EmbeddedI CE-RT logic register is programmed by shifting datainto the
EmbeddedI CE scan chain (scan chain 2). The scan chainisa38-bit register comprising:

. a 32-bit data field
. a 5-bit address field
. a read/write bit.

This is shown in Figure C-7 on page C-30.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved.

C-29

Debug in depth

Scan chain
register
> R/W Update
4
5 | Address
Address decoder % J
0 Enable
31 >
g ¢ 18
e = I Control =)
=2 =2 — O Breakpoint/
D Control :D watchpointI
Data % > 5 5 o Rangeout
o o INSTR[31:0] 53
DDI[31:0]
> > > >
e a g
@ I 1A[31:1] b
] & @
0 DA[31:0] @
Value Mask Comparator
Registers
TDI TDO

Figure C-7 ARM9E-S EmbeddedICE macrocell overview

If awatchpoint is requested on a particular memory location but the data valueis
irrelevant, you can program the data mask register to Ox FFFF FFFF (all bits set to 1),
so that the entire data bus value is masked.

C.10.3 Using the mask registers

For each value register thereis an associated mask register in the same format. Setting
abit to 1 in the mask register causes the corresponding bit in the value register to be
ignored in any comparison.

C-30 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.10.4 Watchpoint control registers
The format of the control registers depends on how bit 3 is programmed.

If bit 3 of the control register isprogrammed to a 1, the breakpoint comparators examine
the data address, data, and control signals.

In this case, the format of the control register is as shown in Figure C-8.

Note
You cannot mask bit 8 and bit 3.

ENABLE | RANGE | CHAIN | DBGEXT [DnTRANS 1 DMAS[1] | DMASIO] [DnRW

Figure C-8 Watchpoint control register for data comparison
Data comparison bit functions are described in Table C-5.

Table C-5 Watchpoint control register for data comparison functions

Bit

Name Function

number

0 DnRW Compares against the data not read/write signa from the corein
order to detect the direction of the data data bus activity. DnRW
isOfor aread, and 1 for awrite.

2.1 DMAS[1:0] Compares against the DMAS[1:0] signal from the core in order
to detect the size of the data data bus activity.

4 DNnTRANS Compares against the data not trandlate signal from the corein
order to determine between a User mode (DnTRANS = 0) data
transfer, and a privileged mode (DNTRANS = 1) transfer.

5 DBGEXT Is an external input into the Embedded| CE-RT logic that alows

the watchpoint to be dependent upon some external condition.
The DBGEXT input for watchpoint O is labeled DBGEXT[0],
and the DBGEXT input for watchpoint 1 islabeled
DBGEXTI[1].

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-31

Debug in depth

Table C-5 Watchpoint control register for data comparison functions (continued)

Bit

Name Function
number

6 CHAIN Selects the chain output of another watchpoint unit in order to
implement some debugger requests. For example, breakpoint on
address YYY only when in process XXX.
In the ARM9E-S Embedded| CE-RT logic, the CHAINOUT
output of watchpoint 1 is connected to the CHAIN input of
watchpoint 0. The CHAINOUT output is derived from alatch.
The address or control field comparator drives the write enable
for the latch and the input to the latch is the value of the data
field comparator. The CHAINOUT latch is cleared when the
control value register iswritten or when DBGNTRST isLOW.

7 RANGE Can be connected to the range output of another watchpoint
register. In the ARM9E-S Embedded| CE-RT logic, the address
comparator output of watchpoint 1 is connected to the RANGE
input of watchpoint 0. This allows you to couple two
watchpoints for detecting conditions that occur simultaneously,
for example, for range-checking.

8 ENABLE If awatchpoint match occurs, the internal DWPT signal is only
asserted when the ENABLE bit is set. Thisbit only existsin the
value register. It cannot be masked.

If bit 3 of the control register is programmed to 0, the comparators examine the
instruction address, instruction data, and instruction control buses. In this case bits [2]
and [0] of the mask register must be set to don’t care(programmedto 1 _1). Theformat
of the register in this case is as shown in Figure C-9.

ENABLE | RANGE CHAIN | DBGEXT | INnTRANS 0 X ITBIT X

Figure C-9 Watchpoint control register for instruction comparison

C-32 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

Instruction comparison bit functions are described in Table C-6.

Table C-6 Watchpoint control register for instruction comparison functions

Bit

Name Function
number

1 ITBIT Compares against the Thumb state signal from the core to
determine between a Thumb (ITBIT = 1) instruction fetch or an
ARM (ITBIT =0) instruction fetch.

4 INTRANS Compares against the not translate signal from the corein order to
determine between auser mode (INTRANS = 0) instruction fetch,
and a privileged mode (INTRANS = 1) fetch.

5 DBGEXT Isan externa input into the EmbeddedI CE-RT logic that allows
the watchpoint to be dependent upon some external condition.
The DBGEXT input for watchpoint O is labelled DBGEXT(0],
and the DBGEXT input for watchpoint 1 islabeled DBGEXT[1].

6 CHAIN Selects the chain output of another watchpoint unit in order to
implement some debugger requests. For example, breakpoint on
address YYY only when in process XXX.
In the ARM9E-S Embedded| CE-RT logic, the CHAINOUT
output of watchpoint 1 is connected to the CHAIN input of
watchpoint 0. The CHAINOUT output is derived from alatch.
The address or control field comparator drivesthe write enable for
the latch, and the input to the latch is the value of the data field
comparator. The CHAINOUT latch is cleared when the control
value register iswritten, or when nTRST isLOW.

7 RANGE Can be connected to the range output of another watchpoint
register. In the ARM9E-S Embedded| CE-RT logic, the address
comparator output of watchpoint 1 is connected to the RANGE
input of watchpoint 0. This allows you to couple two watchpoints
for detecting conditions that occur simultaneously, for example,
for range-checking.

8 ENABLE If awatchpoint match occurs, the internal IBREAK PTsignal is
only asserted when the ENABLE hit is set. This bit only existsin
the value register, it cannot be masked.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-33

Debug in depth

C.10.5 Debug control register

The debug control register is 6 bits wide. Writing control bits occurs during a register
write access (with the read/write bit HIGH). Reading control bits occurs during a
register read access (with the read/write bit LOW).

Figure C-10 shows the function of each bit in this register.

5 4 3 2 1 0

Embedded-ICE | Monitor mode

disable enable Single-step INTDIS DBGRQ DBGACK

Figure C-10 Debug control register format
These functions are described in Table C-7 and Table C-8 on page C-35.

Table C-7 Debug control register bit functions

Bit

Name Function
number

5 Embedded- Controlsthe address and data comparison logic contained within
ICE disable the Embedded-ICE logic. When set to 1, the address and data

comparators are disabled. When set to O, the address and data
comparators are enabled. You can use this bit to save power in a
system where the Embedded-| CE functionality is not required.
The reset state of thisbit is 0 (comparators enabled). An extra
piece of logic initialized by debug reset ensures that the
Embedded-ICE logic is automatically disabled out of reset. This
extralogic is set by debug reset and is automatically reset on the
first access to scan chain 2.

4 Monitor Controls the selection between monitor mode debug (monitor
mode mode enable = 1) and halt mode debug. In monitor mode,
enable breakpoints and watchpoints cause Prefetch Aborts and Data

Aborts to be taken (respectively). At reset, the monitor mode
enable bitissetto 1.

3 Single-step Controls the single-step hardware. Thisis explained in more
detail in Single-stepping on page C-40.

2 INTDIS If bit 2 (INTDIS) is asserted, the interrupt signalsto the
processor are inhibited. Table C-8 shows interrupt signa control.

1.0 DBGRQ, These bits allow the values on DBGRQ and DBGACK to be
DBGACK forced.

C-34

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

Table C-8 Interrupt signal control

DBGACK INTDIS Interrupts

0 0 Permitted
1 X Inhibited
X 1 Inhibited

Both IRQ and FIQ are disabled when the processor isin debug state (DBGACK =1),
or when INTDISis forced.

As shown in Figure C-12 on page C-37, the value stored in bit 1 of the control register
is synchronized and then ORed with the external EDBGRQ before being applied to the
processor.

In the case of DBGACK, the value of DBGACK from the core is ORed with the value
held in bit O to generate the external value of DBGACK seen at the periphery of the
ARMOE-S. Thisallowsthe debug system to signal to therest of the system that the core
isstill being debugged even when system-speed accesses are being performed (inwhich
case the internal DBGACK signal from the coreis LOW).

The structure of the debug control and status registersis shown in Figure C-12 on
page C-37.

C.10.6 Debug status register

Thedebug statusregister isfive bitswide. If it isaccessed for aread (with the read/write
bit LOW), the status bits are read. The format of the debug status register is shownin
Figure C-11.

ITBIT SYSCOMP IFEN DBGRQ DBGACK

Figure C-11 Debug status register

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. C-35

Debug in depth

The function of each bit in this register is shown in Table C-9.

Table C-9 Debug status register bit functions

Bit

Name Function

number

1.0 DBGRQ, Allow the values on the synchronized versions of EDBGRQ and
DBGACK DBGACK to be read.

2 IFEN Allows the state of the core interrupt enable signal to be read.

3 SYSCOMP Allows the state of the SY SCOMP hit from the core to be read.
This alows the debugger to determine that a memory access
from the debug state has completed.

4 ITBIT Allows the status of the output ITBIT to be read. This enables

the debugger to determine what state the processor isin, and
therefore which instructions to execute.

The structure of the debug control and status registersis shown in Figure C-12 on
page C-37.

C-36 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug control

Debug status

register register
ITBIT .| Bit4
(from core) T OITBIT
SYSCOMP ~| Bit3
(from core) "~ |SYSCOMP)
DBGACK _
(from core) - + >
Bit 2
INTDIS .
—) Bit 2
> + IFEN
Bit 1
DBGRQ _I
EDBGRQ » >
(from ARMO9E-S input)
| Bit1
" | DBGRQ
DBGACK .| Bit0
(from core) " IDBGACK
Bit 0 > 4 >
DBGACK o

Debug in depth

Interrupt mask enable
(to core)

DBGRQ
(to core)

DBGACK
(to ARM9E-S output)

Figure C-12 Debug control and status register structure

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved.

C-37

Debug in depth

C.10.7 Vector catch register

The ARM9E-S Embedded| CE-RT logic controls hardware to enable accesses to the
exception vectors to be trapped in an efficient manner. Thisis controlled by the vector
catch register, as shown in Figure C-13. The functionality is described in Vector

catching on page C-39.

FIQ IRQ Reserved | D_Abort | P_Abort SWiI Undef Reset

Figure C-13 Vector catch register

C-38 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.11 Vector catching

The ARM9E-S Embeddedl CE-RT logic contains hardware that allows efficient
trapping of fetches from the vectors during exceptions. Thisis controlled by the vector
catch register. If one of the bitsin thisregister is set HIGH and the corresponding
exception occurs, the processor enters debug state as if a breakpoint has been set on an
instruction fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the vector catch
register isset, the ARM9E-Sfetches an instruction from location 0x8. The vector catch
hardware detects this access and forces the internal IBREAKPT signal HIGH into the
ARMOE-S control logic. This, in turn, forces the ARM9E-S to enter debug state.

The behavior of the hardware isindependent of the watchpoint comparators, leaving
them free for generd use. The vector catch register is sensitive only to fetches from the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the vector catch register
is set, the processor is not forced to enter debug state.

I'n monitor mode debug, vector catching isdisabled on Data Aborts and Prefetch Aborts
to avoid the processor being forced into an unrecoverable state as aresult of the aborts
that are generated for the monitor mode debug.

ARM DDI 0165B

Copyright © 2000 ARM Limited. All rights reserved. C-39

Debug in depth

C.12 Single-stepping

The ARM9E-S Embedded| CE-RT logic contains logic that allows efficient
single-stepping through code. This leaves the watchpoint comparators free for general
use.

Enable this function by setting bit 3 of the debug control register. The state of this bit
must only be altered while the processor isin debug state. If the processor exits debug
state and this bit is HIGH, the processor fetches an instruction, executesit, and then
immediately reenters debug state. This happens independently of the watchpoint
comparators. If a system speed data access is performed while in debug state, the
debugger must ensure that the control bit is clear first.

Note
This bit must not be set when using monitor mode debug.

C-40

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.13 Coupling breakpoints and watchpoints

You can couple watchpoint units 1 and 0 together using the CHAIN and RANGE
inputs. Using CHAIN enables Watchpoint O to be triggered only if Watchpoint 1 has
previously matched. Using RANGE enables you to perform simple range checking by
combining the outputs of both watchpoints.

C.13.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] bethevaueinthe address value register

An{ 31: 0] bethe vauein the address mask register

Al 31: 0] bethe I A bus from the ARMOE-Siif control register bit 3 is clear, or the
DA bus from the ARMOE-S if control register bit 3is set

Dv[31:0] bethevaueinthedatavalue register

Dni 31: 0] bethevauein the data mask register

D[31: 0] bethe INSTR busfrom the ARM9E-Sif control register bit 3isclear, or
the RDATA busfrom the ARMOE-Sif control register bit 3isset and the
processor is doing aread, or the WDATA bus from the ARM9E-S if
control register bit 3 is set and the processor is doing awrite

Cv[8: 0] be the value in the control value register
Cni 7: 0] be the value in the control mask register
c9:0] be the combined control bus from the ARM9E-S, other watchpoint

registers, and the DBGEXT signal.

CHAINOUT signal
The CHAINOUT signal is derived asfollows:

VHEN (({Av[31:0],Cv[4,2:0]} XNOR {A[31:0],d4,2:0]}) OR
{An{ 31: 0], Cnf 4: 0]} == OxFFFFFFFFF)
CHAI NOUT = ((({Dv[31:0],Cv[6:4]} XNOR {D[31:0],C7:5]}) OR
{Dn{31:0],0n{ 7:5]}) == Ox7FFFFFFFF)

The CHAINOUT output of Watchpoint register 1 providesthe CHAIN input to
Watchpoint 0. This CHAIN input allows for quite complicated configurations of
breakpoints and watchpoints.

Note
Thereisno CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint O.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-41

Debug in depth

Take, for example, the request by adebugger to breakpoint on theinstruction at location
YYY when running process XX X in amultiprocess system. If the current processID is
stored in memory, you can implement the above function with awatchpoint and
breakpoint chained together. The watchpoint address points to a known memory
location containing the current process I D, the watchpoint data points to the required
process ID, and the ENABLE hit is set to off.

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch. Theinput to the latch isthe output of the data comparator from
the samewatchpoint. The output of thelatch drivesthe CHAIN input of the breakpoint
comparator. The address YY'Y is stored in the breakpoint register, and when the
CHAIN input is asserted, the breakpoint address matches, and the breakpoint triggers
correctly.

C.13.2 DBGRNG signal

The DBGRNG signal is derived as follows:

DBGRNG = ((({Av[31:0],Cv[4,2:0]} XNOR {A[31:0],C4,2:0]}) OR
{An{31:0],Cn{4:0]}) == OXFFFFFFFFF) AND
((({Dv[31:0],Cv[7:5]} XNOR {D[31:0],C[7:5]}) OR

Dn{31: 0], Cn{ 7: 5] }) == OX7FFFFFFFF)

The RANGE input to Watchpoint unit O is derived as the address comparison of
Watchpoint unit 1, that is:

RANGEI N = ((Av[31:0] XNOR A[31:0]) OR Anf31:0] == OXFFFF FFFF)

This RANGE input alows you to couple two breakpoints together to form range
breakpoints.

Selectabl e ranges are restricted to being powers of 2. For example, if abreakpoint isto
occur when the addressisin thefirst 256 bytes of memory, but not in the first 32 bytes,
program the watchpoint registers as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 0x00000000 and an address
mask of 0X0000001F.

2. Clear the ENABLE bit.

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH
because the address matches, but does not trigger the breakpoint because the
ENABLE isLOW.

C-42

Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

For Watchpoint O:

1. Program Watchpoint 0 with an address value of 0x00000000 and an address
mask of 0X000000FF.

2. Setthe ENABLE hit.
3. Program the RANGE bit to match a 0.
4. Program al other Watchpoint O registers as normal for a breakpoint.

If Watchpoint O matches but Watchpoint 1 does not (that isthe RANGE input to
Watchpoint 0is 0), the breakpoint is triggered.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-43

Debug in depth

C.14 Disabling EmbeddedICE-RT
You can disable EmbeddedI CE-RT by wiring the DBGEN input LOW.

When DBGEN is LOW:

. DBGIEBKPT, DBGDEWPT, andDBGRQ are forced LOW to the core.
(DBGRQ is the internal DBGRQ, which is a combination of the external input
EDBGRQ and the debug control register bit 1 DBGRQ.)

. DBGACK is forced LOW from the ARM9E-S.
. Interrupts pass through to the processor uninhibited.

C-44 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Debug in depth

C.15 EmbeddedICE-RT timing

Embedded| CE-RT samples the DBGEXT[1] and DBGEXT[O0] inputs on the rising
edge of CLK.

Refer to Chapter 9 AC Parameters for details of the required setup and hold times for
these signals.

ARM DDI 0165B Copyright © 2000 ARM Limited. All rights reserved. C-45

Debug in depth

C-46 Copyright © 2000 ARM Limited. All rights reserved. ARM DDI 0165B

Index

Theitemsin thisindex arelisted in aphabetic order. The references given are to page numbers.

A

Abort 2-23
Data 2-23,C-27
handler 2-24
mode 2-8
Prefetch 2-23, C-27
vector C-25

Aborted watchpoint C-26
Access

systemspeed C-24

watchpointed C-25, C-27
Address bits, significant 4-7
Addressingmode2 1-16
Addressing mode 2 (privileged)
Addressingmode3 1-18
Addressing mode 4 (load) 1-18
Addressing mode 4 (store) 1-18
Alignment 2-7

1-17

ARM
ingtructionset 1-5
instruction set summary ~ 1-12
state 1-5,2-3
ARM stateto Thumb state 2-3
ARMOE-S
architecture 1-5
block diagram 1-7
corediagram 1-7
functional diagram 1-7
instructionset 1-10
signals compared to
ARM9TDMI B-2

B

Banked registers 2-9, C-19
Big-endian 2-4

BKPT 2-25

Block diagram, ARM9E-S 1-7

Boundary-scan
chaincells C-5
interface C-5

Breakpoint instruction 2-25

Breakpoints 7-7, 7-9, C-24
instruction boundary ~ 7-10
Prefetch Abort 7-10

Burst types 4-10

Buscycles, CLKEN 4-31

Busy-wait 6-6, 6-17
abandoned 6-17
interrupted 6-17

Bypassregister C-9, C-10
Byte 2-7
access 4-21

C

Cflag 2-16
CFGBIGEND A-6
CFGDISLTBIT A-6

Copyright © 2000 ARM Limited. All rights reserved.

Index-i

Index

CFGHIVECS A-6

CHAIN C-42
CHSD A-7
CHSE A-7
CLK A-2
CLKEN A-2
Clock

domains 7-14
maximum skew ~ 9-8
sysem 7-14
test 7-14
Codedensity 1-5
Coldreset 3-3
Compression, instruction 1-5
Condition codeflags 2-16
Configuration input timing ~ 9-4
Control bits 2-17
Coprocessor
expansion interface signals B-2
handshake signals 6-6
interface 6-2
MCR 6-18
register transfer cycle 4-29
register transfer instructions ~ 7-16
Coprocessor instructions
Busy-wait 6-6
during busy-wait 6-17
during interrupts 6-17
privileged instructions 6-16
privileged modes 6-16
Corediagram, ARM9E-S 1-7
CORECLKENIN A-2
CORECLKENOUT A-2
CPSR 2-9,2-12, 2-14, 2-16
mode C-25
CPUreset 34

Current program status register ~ 2-9,
2-12, 2-14, 2-16
Cycle
internal 4-9, 4-11
merged I-S 4-11
nonsequential 4-9

DBGCOMMRX A-9
DBGCOMMTX A-9
DBGDEWPT A-4
DBGEN A-9
DBGEXT A-9
DBGIEBKPT A-3
DBGINSTREXEC A-9
DBGINSTRVALID A-9
DBGIR A-8
DBGNnTDOEN A-8
DBGNTRST 3-2,A-8
DBGRNG A-9
DBGRQI A-9
DBGSCREG A-8
DBGSDIN A-8
DBGTAPSM A-8
DBGTCKEN A-8
DBGTDI A-8
DBGTDO A-8
DBGTMS A-8
Debug
comms control register 7-16
comms dataread register 7-16
comms datawriteregister 7-16
control register 7-6
entry from ARM state C-18
entry from Thumb state C-18
expansion signals B-6
extensions 7-2
hardware extensions 7-4
interfface 7-2
interfacesignals 7-5
Multi-ICE ~ 7-14
request C-24
state 7-5
state, processor restart on exit C-9
statusregister 7-6
support 7-6
Decode 1-2
Determining
corestate 7-15
system state 7-15

E

EDBGRQ A-9
EmbeddedICE-RT C-28
debug statusregister 7-15
disabling 7-8
functionality C-28
hardware C-28
logic 7-4,7-6
operation 7-6
overview 7-6
progranming C-2
register map C-28
registers, accessing C-3
reset 3-4
single stepping C-40
Endian effects 4-7, 4-30
Endianness 2-4
Exception
entry and exit 2-20
entry, ARM state 2-21
entry, Thumb state 2-21
priority 2-27
vectors 2-26
Exceptions 2-20
FIQ 2-22
IRQ 2-22
Execute 1-2

F

F bit, FIQ disable 2-17

Fetch 1-2

FIQ
disable, Fbit 2-17
exception 2-22
mode 2-8

Flags 2-16

Forwarding 1-4

Functional diagram, ARM9E-S 1-7

H

Halfword 2-7
Halfword access 4-21

sequential 4-9 S - a
Dev!ce|dent|f|catt|oncode C-9,C-10 High registers 2-15
D Devicereset 3-2
Disabling EmbeddedICE-RT ~ 7-8 |
DA A-4 DLOCK A-4 ' .
DABORT A-4 DMAS A-4 | bit, IRQ disable 2-17
Data DMORE ~A-4 IA A3
Abort 2-23,C-27 DM A-5 IABORT A-3
dependencies 1-4 i
el DNMREQ A-4 ID register - C-5, C-9, C-10
memory interfacetiming 9-3 DRRW A-5 IDCODE instruction C-5, C-11
types 27 DNTRANS A-5 Identification register See ID register
DBGACK A-9 DSEQ A5 M A-3
Index-ii Copyright © 2000 ARM Limited. All rights reserved.

INMREQ A-3
INSTR A-3

Instruction
compression 1-5

coprocessor register transfer 7-16

fetch, nonsequential 4-9
fetch, sequential 4-10
interface 4-3
interface cycletypes 4-8
length 2-6
pipdine 1-2
pipeline operation 1-4
register C-9, C-10
SCAN_N C-8,C-12
systemspeed C-26
Instruction set
ARM 1-5,1-12
summary 1-10
Thumb 1-5
Interface
boundary-scan C-5
debug 7-2
Interlocking 1-4
Internal cycle 4-9, 4-11

Interrupts

M

MCR 6-18
Memory 1-2
access 14
cycle 4-8
formats 2-4
interface 4-2
requests, withdrawal of ~ 4-32

Merged I-Scycle 4-11

Mode
abort 2-8,C-25
bits 2-18
FIQ 2-8
identifier 2-10
IRQ 2-8
operating 2-8
privileged 2-8
PSR bit values 2-18
supervisor 2-8
Systen 2-8
Undefined 2-8
User 2-8

Multi-ICE 7-14

PSR
control bits 2-17
mode bit values 2-18
reserved bits 2-19

Q

Qflag 2-17

R

RDATA A-4

Register
banked 2-9
current program status =~ 2-9
general-purpose 2-9
high 2-15
link 2-9
program status 2-16
saved program status 2-9
status 2-9

Register, debug
bypass C-10
commscontrol 7-16
commsdataread 7-16

Index

) N comms datawrite 7-16
dlsabl_eflags 2-21 control 7-6
Interworking 2-3 Nflag 2-16 EmbeddedI CE-RT debug
INTEST nFIQ A-6 staus - 7-15
instruction C-12 EmbeddedI CE-RT, accessi ng C-3
mode C-16 niRQ ~ A-6 ID C-5,C10
Nonsequential cycle 4-9 instruction C-9, C-10
INTRANS ~ A-3 NRESET 32 A-6 scan path select C-8, C-10
IRQ ’ status 7-6
disable, | bit 2-17 testdata C-10
exception 2-22 O Reserved bits, PSR 2-19
mode 28 Operating modes 2-8 Resst 2-22,3-2
ISEQ A-3 . behavior 3-5
ITBIT A-3 Operating state CPU 3-4
ARM 2-3 EmbeddedICE-RT 3-4
Thit 2-18 modes 3-3
J Thumb 2-3 power-on 3-3
. . warm 3-4
JTAG instructions . .
IDCODE C-5, C-11 P EEﬂST tART "Tf‘fr“d'oé‘eb co co
INTEST C-12 art on exit from debug -
RESTART C9 PASS A-7
SCAN_N C-12, C-16 PC 2-12,2-14
SCAN_NTAP C-14 - S
TAP C-11 Pipeline
) ARM 6-2 Saved program statusregister 2-9
JTAG interface 7-4,7-5 coprocessor 6-2 Sean
Pipelinefollower 6-2 cdls C-14
L Power-onreset 3-3 path C-2
LATECANCEL A7 Prefetch Abort 2-23, C-27 path select register C-8, C-10
Link register 2-9 2 12, 2-14 Priority of exceptions 2-27 s Chalbr:asr dlocation C-12
-9, 2-12, 2- L num ocation C-
Litle-endian 2-4 Privileged modes 2-8 - sanchainl C-2, C-10, C-1
L ist 2.15 Processor state, determining C-18 scanchain2 C-2, C-10, C-1
L;W ”;g'lze'zs “ Program counter 2-9, 2-12, 2-14 SCANENABLE B-5
e Program status registers ~ 2-16 SCANIN B-5
Copyright © 2000 ARM Limited. All rights reserved. Index-iii

Index

SCANOUT B-5
SCAN_N C-8,C-12,C-16
Sequentia cycle 4-9
Serial interface, JTAG ~ 7-4, 7-5
Signal types
addressclass 4-4,4-15
datatimed 4-6,4-18
debug interface 7-5
Signas
CFGBIGEND A-6
CFGDISLTBIT A-6
CFGHIVECS A-6
CHAIN C-42
CHSD A-7
CHSE A-7
CLK A-2
CLKEN A-2
CORECLKENIN A-2
CORECLKENOUT A-2
DA A-4
DABORT A-4
DBGACK A-9
DBGCOMMRX A-9
DBGCOMMTX A-9
DBGDEWPT A-4
DBGEN A-9
DBGEXT A-9
DBGIEBKPT A-3
DBGINSTREXEC A-9
DBGINSTRVALID A-9
DBGIR A-8
DBGNnTDOEN A-8
DBGnTRST 3-2,A-8
DBGRNG A-9
DBGRQI A-9
DBGSCREG A-8
DBGSDIN A-8
DBGSDOUT A-8
DBGTAPSM A-8
DBGTCKEN A-8

Signals (continued)
nRQ A-6
nRESET 3-2, A-6
PASS A-7
RDATA A-4
SCANENABLE B-5
SCANIN B-5
SCANOUT B-5
TAPID A-9
WDATA A-4
Significant address bits ~ 4-7
Single-step core operation C-8
Single-stepping C-40
Software interrupt 2-24
SP 2-12,2-14
SPSR 2-9, 2-12, 2-14, 2-16, C-25
Stack pointer 2-12, 2-14

State
ARM 15
debug 7-5
Thumb 1-5
States
core C-18
system C-18
TAP C-14

TAPcontroller 7-2
State, switching 2-3
Statusregisters 2-9
Sticky overflow flag 2-17
Stored program status register 2-12,

2-14, 2-16
Supervisor mode 2-8
Swi 2-24

Switching states 2-3
System mode 2-8

Timing
configurationinput 9-4
datamemory interface 9-3
exceptioninput 9-4

U

Undefined instruction 2-25
Undefined mode 2-8
Unused instruction codes C-9
User mode 2-8

\Y/
Vflag 216
Vector, exception 2-26

W

Warmreset 3-4
Watchpointed
access C-25, C-27
memory access C-25
Watchpoints 7-6, 7-7, C-24
aborted C-26
timing 7-11
with exception C-24
WDATA A-4
Word 2-7

Writeback 1-2

Z
Zflag 2-16

DBGTDI A-8 System speed instruction C-26

DBGTDO A-8 System state, determining 7-15

DBGTMS A-8

DLOCK A-4

DMAS A-4 T

DMORE A-4

DnM A-5 Thit 2-18

DnMREQ A-4 TAP 7-2

DnRW A-5 controller ~ 7-4, C-2, C-3, C-14

BgERANf 5 A-5 controller, states ~ 7-2

Q h instruction C-11

EDBGRQ A-9 state C-14

1A A-3

IABORT A-3 TAPID A-9

InM A-3 Test AccessPort 7-2

INMREQ ~ A-3 :

INSTR © A-3 Test clock .7 14

INTRANS A-3 Test dataregisters C-10

ISEQ A-3 Thumb

ITBIT A-3 instructionset 1-5

LATECANCEL A-7 sate 1-5, 2-3, 2-12

nFIQ A-6 Thumb stateto ARM state 2-3
Index-iv Copyright © 2000 ARM Limited. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Atmel:
AT91SAM9260B-QU AT91SAM9I260B-CU AT91SAMIRL6E4-CU AT91SAMOIR64-CU-999 AT91SAM9261B-CU

AT91SAM9261B-CU-999

http://www.mouser.com/atmel
http://www.mouser.com/access/?pn=AT91SAM9260B-QU
http://www.mouser.com/access/?pn=AT91SAM9260B-CU
http://www.mouser.com/access/?pn=AT91SAM9RL64-CU
http://www.mouser.com/access/?pn=AT91SAM9R64-CU-999
http://www.mouser.com/access/?pn=AT91SAM9261B-CU
http://www.mouser.com/access/?pn=AT91SAM9261B-CU-999

	ARM9E-S Rev 1 Technical Reference Manual
	Preface
	About this document
	Further reading
	Feedback

	1 Introduction
	1.1 About the ARM9E�S
	1.1.1 The instruction pipeline
	1.1.2 Memory access
	1.1.3 Forwarding, interlocking and data dependencies

	1.2 ARM9E�S architecture
	1.2.1 Instruction compression
	1.2.2 The Thumb instruction set

	1.3 ARM9E-S block, core, and interface diagrams
	1.4 ARM9E�S instruction set summary
	1.4.1 ARM instruction set summary
	1.4.2 Thumb instruction set summary

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.2 Processor operating states
	2.2.1 Switching state
	2.2.2 Interworking ARM and Thumb state

	2.3 Memory formats
	2.3.1 Big-endian format
	2.3.2 Little-endian format

	2.4 Instruction length
	2.5 Data types
	2.6 Operating modes
	2.7 Registers
	2.7.1 The ARM state register set
	2.7.2 The Thumb state register set
	2.7.3 The relationship between ARM state and Thumb state registers
	2.7.4 Accessing high registers in Thumb state

	2.8 The program status registers
	2.8.1 The condition code flags
	2.8.2 The control bits
	2.8.3 Reserved bits

	2.9 Exceptions
	2.9.1 Exception entry and exit summary
	2.9.2 Entering an exception
	2.9.3 Leaving an exception
	2.9.4 Reset
	2.9.5 Fast interrupt request
	2.9.6 Interrupt request
	2.9.7 Aborts
	2.9.8 Software interrupt instruction
	2.9.9 Undefined instruction
	2.9.10 Breakpoint instruction (BKPT)
	2.9.11 Exception vectors
	2.9.12 Exception priorities

	3 Device Reset
	3.1 About device reset
	3.2 Reset modes
	3.2.1 Power-on reset
	3.2.2 CPU reset
	3.2.3 EmbeddedICE-RT reset
	3.2.4 Normal operation

	3.3 ARM9E-S behavior on exit from reset

	4 Memory Interface
	4.1 About the memory interface
	4.2 Instruction interface
	4.2.1 Instruction interface signals

	4.3 Instruction interface addressing signals
	4.3.1 IA[31:1]
	4.3.2 ITBIT
	4.3.3 InTRANS
	4.3.4 InM[4:0]

	4.4 Instruction interface data timed signals
	4.4.1 INSTR[31:0]
	4.4.2 IABORT

	4.5 Endian effects for instruction fetches
	4.6 Instruction interface cycle types
	4.6.1 Instruction interface, nonsequential cycles
	4.6.2 Instruction interface, sequential cycles
	4.6.3 Instruction interface, internal cycles
	4.6.4 Instruction interface, merged I�S cycles

	4.7 Data interface
	4.7.1 Data interface signals

	4.8 Data interface addressing signals
	4.8.1 DA[31:0]
	4.8.2 DnRW
	4.8.3 DMAS[1:0]
	4.8.4 DnTRANS
	4.8.5 DLOCK
	4.8.6 DnM[4:0]

	4.9 Data interface data timed signals
	4.9.1 WDATA[31:0]
	4.9.2 RDATA[31:0]
	4.9.3 DABORT
	4.9.4 Byte and halfword accesses

	4.10 Data interface cycle types
	4.10.1 Data interface, nonsequential cycles
	4.10.2 Data interface, sequential cycles
	4.10.3 Data interface, internal cycles
	4.10.4 Data interface, merged I�S cycles
	4.10.5 Data interface, coprocessor register transfer cycles

	4.11 Endian effects for data transfers
	4.11.1 Writes
	4.11.2 Reads

	4.12 Use of CLKEN to control bus cycles
	4.12.1 Withdrawal of memory requests in waited cycles

	5 Interrupts
	5.1 About interrupts
	5.2 Hardware interface
	5.2.1 Generating an interrupt
	5.2.2 Synchronization
	5.2.3 Re-enabling interrupts after an interrupt exception
	5.2.4 Interrupt registers

	5.3 Maximum interrupt latency
	5.4 Minimum interrupt latency

	6 ARM9E-S Coprocessor Interface
	6.1 About the coprocessor interface
	6.1.1 Coprocessor pipeline operates in step with the ARM9E-S
	6.1.2 Coprocessor pipeline one cycle behind the ARM9E-S

	6.2 LDC/STC
	6.2.1 Coprocessor handshake encoding

	6.3 MCR/MRC
	6.4 MCRR/MRRC
	6.5 Interlocked MCR
	6.6 Interlocked MCRR
	6.7 CDP
	6.8 Privileged instructions
	6.9 Busy-waiting and interrupts
	6.10 Coprocessor 15 MCRs
	6.11 Connecting coprocessors
	6.11.1 Connecting a single coprocessor
	6.11.2 Connecting multiple coprocessors
	6.11.3 No external coprocessor
	6.11.4 Undefined instructions

	7 Debug Interface and EmbeddedICE-RT
	7.1 About the debug interface
	7.1.1 Halt mode
	7.1.2 Monitor mode

	7.2 Debug systems
	7.2.1 The debug host
	7.2.2 The protocol converter
	7.2.3 The ARM9E�S

	7.3 About EmbeddedICE-RT
	7.4 Disabling EmbeddedICE-RT
	7.5 Debug interface signals
	7.5.1 Entry into debug state on breakpoint
	7.5.2 Breakpoints and exceptions
	7.5.3 Watchpoints
	7.5.4 Watchpoints and exceptions
	7.5.5 Debug request
	7.5.6 Actions of the ARM9E�S in debug state

	7.6 ARM9E�S core clock domains
	7.6.1 Clocks and synchronization

	7.7 Determining the core and system state
	7.8 The debug communications channel
	7.8.1 Debug comms channel registers
	7.8.2 Debug comms channel control register
	7.8.3 Comms channel monitor mode debug status register
	7.8.4 Communications using the comms channel

	7.9 Monitor mode debug

	8 Instruction Cycle Times
	8.1 Instruction cycle count summary
	8.2 Introduction to detailed instruction cycle timings
	8.3 Branch and ARM branch with link
	8.4 Thumb branch with link
	8.5 Branch and exchange
	8.6 Thumb Branch, Link, and Exchange <immediate>
	8.7 Data operations
	8.8 MRS
	8.9 MSR operations
	8.10 Multiply and multiply accumulate
	8.10.1 Interlocks

	8.11 QADD, QDADD, QSUB, and QDSUB
	8.11.1 Interlocks

	8.12 Load register
	8.12.1 Interlocks

	8.13 Store register
	8.14 Load multiple registers
	8.14.1 Interlocks

	8.15 Store multiple registers
	8.16 Load double register
	8.17 Store double register
	8.18 Data swap
	8.18.1 Interlocks

	8.19 PLD
	8.20 Software interrupt, undefined instruction, and exception entry
	8.21 Coprocessor data processing operation
	8.22 Load coprocessor register (from memory)
	8.23 Store coprocessor register (to memory)
	8.24 Coprocessor register transfer (to ARM)
	8.25 Coprocessor register transfer (from ARM)
	8.26 Double coprocessor register transfer (to ARM)
	8.27 Double coprocessor register transfer (from ARM)
	8.28 Coprocessor absent
	8.29 Unexecuted instructions

	9 AC Parameters
	9.1 Timing diagrams
	9.2 AC timing parameter definitions

	Appendix A Signal Descriptions
	A.1 Clock interface signals
	A.2 Instruction memory interface signals
	A.3 Data memory interface signals
	A.4 Miscellaneous signals
	A.5 Coprocessor interface signals
	A.6 Debug signals

	Appendix B Differences Between the ARM9E S and the ARM9TDMI
	B.1 Interface signals
	B.2 ATPG scan interface
	B.3 Timing parameters
	B.4 ARM9E�S design considerations
	B.4.1 Master clock
	B.4.2 JTAG interface timing
	B.4.3 Interrupt timing
	B.4.4 Address class signal timing
	B.4.5 Data Aborts

	B.5 ARM9E-S debugger considerations

	Appendix C Debug in depth
	C.1 Scan chains and JTAG interface
	C.1.1 Debug scan chains
	C.1.2 TAP state machine

	C.2 Resetting the TAP controller
	C.3 Instruction register
	C.4 Public instructions
	C.4.1 EXTEST (0000)
	C.4.2 SAMPLE/PRELOAD (0011)
	C.4.3 SCAN_N (0010)
	C.4.4 INTEST (1100)
	C.4.5 IDCODE (1110)
	C.4.6 BYPASS (1111)
	C.4.7 RESTART (0100)

	C.5 Test data registers
	C.5.1 Bypass register
	C.5.2 ARM9E�S device identification (ID) code register
	C.5.3 Instruction register
	C.5.4 Scan path select register
	C.5.5 Scan chains 1 and 2

	C.6 ARM9E�S core clock domains
	C.7 Determining the core and system state
	C.7.1 Determining the core state
	C.7.2 Determining the system state
	C.7.3 Exit from debug state

	C.8 Behavior of the program counter during debug
	C.8.1 Breakpoints
	C.8.2 Watchpoints
	C.8.3 Watchpoint with another exception
	C.8.4 Watchpoint and breakpoint
	C.8.5 Debug request
	C.8.6 System speed access
	C.8.7 Summary of return address calculations

	C.9 Priorities and exceptions
	C.9.1 Breakpoint with Prefetch Abort
	C.9.2 Interrupts
	C.9.3 Data Aborts

	C.10 EmbeddedICE-RT logic
	C.10.1 Register map
	C.10.2 Programming and reading EmbeddedICE-RT logic registers
	C.10.3 Using the mask registers
	C.10.4 Watchpoint control registers
	C.10.5 Debug control register
	C.10.6 Debug status register
	C.10.7 Vector catch register

	C.11 Vector catching
	C.12 Single-stepping
	C.13 Coupling breakpoints and watchpoints
	C.13.1 Breakpoint and watchpoint coupling example
	C.13.2 DBGRNG signal

	C.14 Disabling EmbeddedICE-RT
	C.15 EmbeddedICE-RT timing

