MICROCHIP

Section 30. Programmable Cyclic Redundancy Check (CRC)

HIGHLIGHTS

This section of the manual contains the following major topics:

30.1 INTOAUCTION ... s 30-2
30.2 MOAUIE OVEIVIEW ...ttt 30-3
B0.3 CROC REGISIEIS ...ttt sttt ettt sae e e s ae e e an et e e neeene e naeas 30-3
B0.4 CROC ENQING ...ttt sh e e bbb ehn e e naeenane s 30-6
10N ST 070 o1 (o o T [o2 SRR PPPR 30-8
30.6 Advantages of Programmable CRC ModUIE...........cooviiiiiiiiiiiieeciee e 30-10
30.8 Operation in POWEr SAve MOUEScoeiiiiiiiiiiic ittt 30-12
30.7 Application of CRC MOGUIEcccuuiiiiiiiiieeee ettt 30-10
30.9 REQISIEr MAPSceeiieieierei e ree et 30-13
30.10 Related Application NOTES.........cocuiiiiiieeee e e 30-14
30.11 ReVISION HISTOIY .o 30-15

© 2006 Microchip Technology Inc. Advance Information DS39714A-page 30-1

X
D
o
C q
’\a
o3
3
oc
(@]
-
D
(2]
3

PIC24F Family Reference Manual

30.1 INTRODUCTION

The programmable Cyclic Redundancy Check (CRC) module in PIC24F devices is a software
configurable CRC checksum generator. The checksum is a unique number associated with a
message or a particular block of data containing several bytes. Whether it is a data packet for
communication, or a block of data stored in memory, a piece of information like checksum helps
to validate it before processing. The simplest way to calculate a checksum is to add together all
the data bytes present in the message. However, this method of checksum calculation fails badly
when the message is modified by inverting or swapping groups of bytes. Also, it fails when null
bytes are added anywhere in the message.

The CRC is a more complicated, but robust, error checking algorithm. The main idea behind the
CRC algorithm is to treat a message as a binary bit stream and divide it by a fixed binary number.
The remainder from this division is considered as the checksum. Like in division, the CRC
calculation is also an iterative process. The only difference is that these operations are done on
modulo arithmetic based on mod2. For example, division is replaced with the XOR operation (i.e.,
subtraction without carry). The CRC algorithm uses the term polynomial to perform all of its cal-
culations. The divisor, dividend and remainder that are represented by numbers are termed as
polynomials with binary coefficients. For example, the number, 25h (11001), is represented as:

Equation 30-1:

(1*x4)+(1*x3) + (0* x2) + (0* x1) + (1* x0), or x4 + x3 + x0

In order to perform the CRC calculation, a suitable divisor is first selected. This divisor is called
the generator polynomial. Since CRC is used to detect errors, a suitable generator polynomial of
suitable length needs to be chosen for a given application, as each polynomial has different error
detection capabilities. Some polynomials are widely used for many applications, but the error
detecting capabilities of any particular polynomial are beyond the scope of this reference chapter.

The CRC calculation is an iterative process and consumes considerable CPU bandwidth when
implemented in software. The software configurable CRC hardware module in PIC24F devices
facilitates a fast CRC checksum calculation with minimal software overhead.

The primary features of the programmable CRC module are:

* Programmable bit length for the CRC generator polynomial (up to 16-bit length)
* Programmable CRC generator polynomial

¢ |nterrupt output

¢ 8-deep, 16-bit or 16-deep, 8-bit FIFO for data input

DS39714A-page 30-2

Advance Information © 2006 Microchip Technology Inc.

Section 30. Programmable Cyclic Redundancy Check (CRC)

30.2 MODULE OVERVIEW

The programmable CRC generator module in PIC24F devices can be broadly classified into two
parts: the control logic and the CRC engine. The control logic incorporates a register interface,
FIFO, interrupt generator and CRC engine interface. The CRC engine incorporates a CRC
calculator which is implemented using a serial shifter with XOR function. A simplified block
diagram is shown in Figure 30-1.

Figure 30-1: Simplified Block Diagram of the Programmable CRC Generator

Control Logic CRC Engine
CRC Result Read
-
CRC Result Write
CRC Registers Serial Data Out
Shifter and XOR

Interrupt Generator) .
Polynomial Coefficients

Shift Clock

yvyvyvyy

- - - §» CRC Engine Interface

!
|
|
|

FIFO |

<;> Polynomial Length |
|

|

|

|

|

30.3 CRC REGISTERS

Different registers associated with the CRC module are described in detail in this section. These
registers are mapped onto the data RAM space as Special Function Registers (SFRs) in PIC24F
devices:

e CRCCON (CRC Control Register)

¢ CRCXOR (CRC XOR Register)

* CRCDAT (CRC Data Register)

* CRCWDAT (Write CRC Shift Register)

The CRCCON register (Register 30-1) is the primary control and status register for the module.
The CRCXOR register (Register 30-2) is used to define the generator polynomial by selecting
the terms to be used. The CRCDAT and CRCWDAT registers are buffers for data input and result
output, respectively.

X
D
o
C q
’\a
o3
53
oc
(@]
-
D
(2]
3

© 2006 Microchip Technology Inc. Advance Information DS39714A-page 30-3

PIC24F Family Reference Manual

Register 30-1:

CRCCON: CRC Control Register

uU-0 uU-0 R/W-0 R-0 R-0 R-0 R-0 R-0
— — CSIDL VWORD4 VWORDS3 VWORD2 VWORD1 VWORDO
bit 15 bit 8
R-0 R-1 uU-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
CRCFUL CRCMPT — CRCGO PLEN3 PLEN2 PLEN1 PLENO
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-14 Unimplemented: Read as ‘0’
bit 13 CSIDL: CRC Stop in Idle Mode bit
1 = Discontinue module operation when device enters Idle mode
0 = Continue module operation in Idle mode
bit 12-8 VWORD4:VWORDO: FIFO Pointer Value bits
Indicates the number of valid words or bytes in the FIFO. Has a maximum value of 8 when the
PLEN3:PLENO bits (CRCCON<3:0>) > 7, or a value of 16 when the PLENS:PLENO bits
(CRCCON<3:0>) <7
bit 7 CRCFUL: FIFO Full bit
1 =FIFO is full
0 = FIFO is not full
bit 6 CRCMPT: FIFO Empty Bit
1 =FIFO is empty
0 = FIFO is not empty
bit 5 Unimplemented: Read as ‘0’
bit 4 CRCGO: Start CRC bit
1 = Start CRC serial shifter
0 = CRC serial shifter turned off
bit 3-0 PLEN3:PLENO: Polynomial Length bits

Generator Polynomial Length = Value of PLEN<3:0> plus 1

DS39714A-page

30-4 Advance Information

© 2006 Microchip Technology Inc.

Section 30. Programmable Cyclic Redundancy Check (CRC)

Register 30-2: CRCXOR: CRC XOR Register

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
X15 X14 X13 X12 X11 X10 X9 X8
bit 15 bit 8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 uU-0
X7 X6 X5 X4 X3 X2 X1 —
bit 7 bit 0
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’
-n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown
bit 15-1 X15:X1: XOR of Polynomial Term n Enable bits

1 = Include (XOR) the nth term (x") in the polynomial
0 = Do not include x" in the polynomial

bit 0 Unimplemented: Read as ‘0’

X
D
o
C q
’\a
o3
53
oc
(@]
-
D
(2]
3

© 2006 Microchip Technology Inc. Advance Information DS39714A-page 30-5

PIC24F Family Reference Manual

30.4 CRC ENGINE
30.4.1

The CRC engine is a serial shifting CRC calculator with feedforward and feedback points,
configurable though multiplexor settings. The topology of a generic CRC calculator is shown in

Figure 30-2.

Generic CRC Engine

The CRC algorithm uses a simplified form of arithmetic process, using the XOR operation instead
of binary division. The coefficients of the generator polynomial are programmed with the
CRCXOR<15:1> bits. Writing a ‘1’ into a location enables XORing of that element in the poly-
nomial. The length of the polynomial is programmed using the PLEN<3:0> bits in the CRCCON
register (CRCCON<3:0>). The PLEN<3:0> value signals the length of the polynomial, and
switches a multiplexor to indicate the tap from which the feedback originated.

The result of the CRC calculation is obtained by reading the holding registers through the CRC
read bus. A direct write path to the CRC Shift registers is also provided through the CRC write
bus. This path is accessed by the CPU through the CRCWDAT register.

Figure 30-2: Generic CRC Calculator Details

PLEN<3:0
a0

2 15
A A A
CRC Shift Register
Hold X1 Hold X2 Hold X3 X15 Hold
XOR Out » 0 Out » 0 Out » 0 0 Out
:() > In In In B> In
DouT Bito |l T\ Bit 1 TN Bit2 || T\ Bit 15
r\/rl 7\/71 r\/rl 1
A A A
clk clk clk clk
CRC Read Bus

CRC Write Bus

DS39714A-page 30-6

Advance Information

© 2006 Microchip Technology Inc.

Section 30. Programmable Cyclic Redundancy Check (CRC)

Figure 30-

30.4.2 Software Configuration of the CRC Engine

The CRC engine needs to be properly configured in software for a given generator polynomial.
The generator polynomial is a hexadecimal number with n bits. The Most Significant bit is
represented as X" and the Least Significant bit is represented as x'. The Most Significant bit is
always assumed to be ‘1°. The x° coefficient is omitted and understood to be ‘1’. Hence, only the
coefficients of x™ to x' need to be programmed in the CRCXOR register.

Consider a specific CRC polynomial as an example:

Equation 30-2:

16 4312 4 54 1

The length of the polynomial is represented by the order of the highest power of the polynomial.
Hence, the above polynomial is of a 16-bit length. Some of its coefficients are zeros and some
are ones.

To program this polynomial into a CRC generator, the PLEN bits (CRCCON<3:0>) and
CRCXOR<15:1> bits should be programmed as shown in Table 30-1.

Table 30-1: Example CRC Setup

Register Names Bit Names Bit Values
CRCCON PLEN3:PLENO OFh
CRCXOR X15:X1 1020h

The polynomial length in this case is 16 (PLEN<3:0> + 1). Note that for the value of X15:X1, as
programmed in Table 30-1, the 12 and 5 bits are set to ‘1’ as required by the generator
polynomial. Bit 0 is always XORed. For a 16-bit polynomial, the 16th bit is always assumed to be
XORed; therefore, there is no CRCXOR bit for either bit 0 or bit 16.

The topology of the CRC generator configured for the example polynomial is shown in
Figure 30-3.

3: CRC Generator Reconfigured for x16 + x12 + x5 + 1

Bit 0

Py

clk

Bit 4 Bit 5 Bit 12 Bit 15

clk clk clk clk

CRC Read Bus

CRC Write Bus

Note:

The x° bit in the CRCXOR register is omitted and is always assumed to be ‘1. Hence, a polynomial with a
Least Significant bit of ‘0’ or ‘1’ (e.g., 1020h or 1021h) has the same effect on the CRC calculation.

© 2006 Microchip Technology Inc.

Advance Information DS39714A-page 30-7

X
D
o
C q
’\a
o3
53
oc
(@]
-
D
(2]
3

PIC24F Family Reference Manual

30.5 CONTROL LOGIC

30.5.1 FIFO

The FIFO is physically implemented as an 8-deep, 16-bit wide storage element. The logic
associated with the FIFO contains a 5-bit counter, called VWORD (VWORD4:VWORDO, or
CRCCON<12:8>). The value in the VWORD4:VWORDO bits indicates the number of new data
elements in the FIFO.

The FIFO behaves as an 8-deep, 16-bit wide array when PLEN3:PLENO > 7, and a 16-deep,
8-bit wide array otherwise. The data for which the CRC is to be calculated must first be written
into the FIFO by the CPU using the CRCDAT register. Data must always be written into the
CRCDAT register. Reading of the CRCDAT register is not allowed and always returns zero.

The smallest data element that can be written into the FIFO is one byte. When
PLEN3:PLENO < 7, every byte write into the FIFO increments VWORD by one, or by two, for
every word write operation.

If PLEN3:PLENO > 7, a word write into the FIFO increments the value of VWORD by one. A sin-
gle byte write to the CRCDAT register does not increment the value of VWORD; instead,
VWORD increments by one only after an even number of bytes (integer multiple of words) are
written into the CRCDAT register.

The CRCFUL bit is set (indicating the FIFO is full) when the value of VWORD reaches 8 (for the
8-deep, 16-bit FIFO configuration) or 16 (for the 16-deep, 8-bit FIFO configuration). The user
needs to ensure that the FIFO is not full while writing a new value to the CRCDAT register.

30.5.2 CRC Engine Interface

30.5.2.1 FIFO TO CRC CALCULATOR

To start serial shifting from the FIFO to the CRC calculator, the CRCGO bit (CRCCON<4>) must
be set (= 1). The serial shifter starts shifting data, starting from the Most Significant bit first, into
the CRC engine only when CRCGO = 1 and the value of VWORD is greater than zero. If the
CRCFUL bit was set earlier, then it is cleared when VWORD decrements by one. VWORD dec-
rements by one when a FIFO location gets shifted completely to the CRC calculator. The serial
shifter continues shifting until VWORD reaches zero, at which point, the CRCMPT bit becomes
set to indicate that the FIFO is empty.

The frequency of the CRC shift clock is twice that of the PIC24F instruction clock cycle, thus
making this hardware shifting process faster than a software shifter. The users can write into the
FIFO while the shift operation is in progress. For a continuous data feed into the CRC engine,
the recommended mode of operation is to initially “prime” the FIFO with a sufficient number of
words or bytes. Once this is completely done, the user can start the CRC by setting the CRCGO
bit to ‘1’. From this point onwards, either VWORD or the CRCFUL bit should be monitored. If the
CRCFUL bit is not set, or the VWORD reads less than 8 or 16, another word can be written onto
the FIFO. At least one instruction cycle must pass after a write to the CRCDAT register before a
read of the VWORD bits is done.

To empty words already written into a FIFO, the CRCGO bit must be set to ‘1’ and the CRC shifter
must be allowed to run until the CRCMPT bit is set.

Note: When PLEN3:PLENO > 7, an integer multiple of words should be loaded into the
FIFO before the application software sets the CRCGO bit. If the CRCGO bit is set
after loading an odd number of bytes into the FIFO, the last odd byte is never shifted
out, and the CRCMPT bit always remains at ‘0’, indicating that the FIFO is not

empty.

DS39714A-page 30-8

Advance Information © 2006 Microchip Technology Inc.

Section 30. Programmable Cyclic Redundancy Check (CRC)

30.5.2.2 NUMBER OF DATA BITS SHIFTED FROM FIFO

The number of data bits to be shifted depends upon the length of the polynomial selected. For
example, if PLEN<3:0> = 5, then the length of the generator polynomial and the size of one data
is 6 bits (PLEN<3:0> + 1). In this case, a full byte of a FIFO location is not shifted out, even
though the CPU can write only a byte. Only 6 bits of a byte are shifted out, starting from the 6th
bit (i.e., the MSb in this case). The two Most Significant bits of each byte are don’t care bits.
Therefore, for a given value of PLEN3:PLENO, it will take ((PLEN<3:0> + 1) * VWORD) number
of shift clock cycles to complete the CRC calculations. Similarly, for a 12-bit polynomial selection,
the shifting starts from the 12th bit of the word, which is the Most Significant bit for this selection.
The Most Significant 4 bits of each word are ignored.

Note: For ‘n’ bit polynomial selection, the CRC calculation is done with integer multiple of
‘n’ bit of data. For example, for a 16 bit polynomial, the CRC calculation is done with
integer multiple of words.

30.5.2.3 CRC RESULT

When the CPU reads the CRCWDAT register, the CRC result is read directly out of the shift
register through the CRC read bus. To get the correct CRC reading, it is necessary to wait for the
CRCMPT bit to go high before reading the CRCWDAT register.

A direct write path to the CRC Shift registers is also provided through the CRC write bus. This
path is accessed by the CPU through the CRCWDAT register. The CRCWDAT register can be
loaded with a desired value prior to the start of the shift process.

Note: When the CPU writes the shift registers directly though the CRCWDAT register, the
CRCGO bit must be ‘0’.

30.5.3 Interrupt Operation

Serial shifting of the FIFO data to the CRC engine begins when the CRCGO bit is set and the
VWORD4:VWORDO bits (VWORD) are greater than zero. During this process, if the CRCMPT
bit makes a transition from ‘0’ (not empty) to ‘1’ (empty), or when the VWORD4:VWORDO bits
make a transition from any value greater than zero to zero, the CRCIF interrupt flag becomes
set. If the CRC interrupt is enabled by setting the CRCIE bit, and the CRCIF bit becomes set,
then an interrupt is generated.

Table 30-2 in Section 30.9 “Register Maps” details the interrupt register associated with the CRC
module. For more details on interrupts and interrupt priority settings, refer to Section 8. “Interrupts™.

Note: If new data is written into the CRCDAT register when the CRCFUL bit is set, the
VWORD Pointer rolls over through ‘0’. However, the CRC Interrupt Flag, CRCIF, is
not set in this condition. In this condition, the CRCFUL bit gets reset, all previous
data written into the FIFO is lost and the new data is written into the first location of
the FIFO. Remaining locations of the FIFO are empty and new data can be written
into the empty locations.

X
D
o
C q
’\a
o3
53
oc
(@]
-
D
(2]
3

© 2006 Microchip Technology Inc. Advance Information DS39714A-page 30-9

PIC24F Family Reference Manual

30.6 ADVANTAGES OF PROGRAMMABLE CRC MODULE

The CRC algorithm is straightforward to implement in software. However, it requires
considerable CPU bandwidth to implement the basic requirements, such as shift, bit test and
XOR. Moreover, CRC calculation is an iterative process and additional software overhead for
data transfer instructions puts enormous burden on the MIPS requirement of a microcontroller.

The CRC engine in PIC24F devices calculates the CRC checksum without CPU intervention.
Moreover, it is much faster than the software implementation; the CRC engine consumes only
half of an instruction cycle per bit for its calculation as the frequency of the CRC shift clock is
twice that of the PIC24F instruction clock cycle. For example, the CRC hardware engine takes
only 64 instruction cycles to calculate a CRC checksum on a message that is 128 bits (16x8)
long. The same calculation, if implemented in software, will consume more than a thousand
instruction cycles even for a well optimized piece of code.

30.7 APPLICATION OF CRC MODULE

Calculating a CRC is a robust error checking algorithm in digital communication for messages
containing several bytes or words. After calculation, the checksum is appended to the message
and transmitted to the receiving station. The receiver calculates the checksum with the received
message to verify the data integrity.

30.7.1 Variations

The CRC module of PIC24F devices shifts out the Most Significant bit first. This is a popular
implementation as employed in XMODEM protocol. In one of the variations (CCITT protocol) for
CRC calculation, the Least Significant bit is shifted out first. This requires bit reversal of the
message polynomial in the software before feeding the message to the PIC24F CRC hardware
module, and this also adds considerable software overhead. Discussions on all the variations are
beyond the scope of this document, but several variations of CRC can be implemented using the
programmable CRC module in PIC24F devices with minimal software overhead.

The choice of the polynomial length, and the polynomial itself, are application dependent.
Polynomial lengths of 5, 7, 8, 10, 12 and 16 are normally used in various standard
implementations. The CRC module in PIC24F devices can be configured for different polynomial
lengths and for different equations. If a polynomial of n bits is selected for calculation, normally
n zeros are appended to the message stream, though there are variations in this process as well.
The following sections explain the recommended step-by-step procedure for CRC calculation,
where n zeros are appended to the message stream for an n bit polynomial. Users can decide
whether zeros, or any other values, need to be appended to the message stream. Depending on
the application, the user may decide whether any value needs to be appended at all.

30.7.2 8-Bit Polynomial

The recommended procedure to calculate a CRC with an 8-bit polynomial is as follows:

1. Program PLEN3:PLENO bits (CRCCON<3:0>) = 07h.

2. Program a value to CRCXOR (e.g., CRCXOR = 31h).

3. Program a value in CRCWDAT:
¢ 0000h (for the start of a new calculation), or
¢ the previously calculated partial result, (for part of the whole message stream).

4. Ifthe CRCFUL bit is not set and if all the data bytes of the message stream are not written
into the FIFO, then write a data byte to the CRCDAT register.

5. Ifthe CRCFUL bit is not set, and if all the data bytes of the message stream have already
been written into the FIFO, then write a byte of 00h in the CRCDAT register and set a
software flag bit in the application using the CRC (i.e., FINAL CALCULATION).

6. If the CRCFUL bit or the software FINAL CALCULATION flag is set, then start CRC by
setting the CRCGO bit.

7. When CRCMPT is set, clear the CRCGO bit and read the result byte from the CRCWDAT
register.

8. Fora partial result (CRC calculation is done but the FINAL CALCULATION flag is not set),
pass the partial result to the next calculation process.

DS39714A-page 30-10

Advance Information © 2006 Microchip Technology Inc.

Section 30. Programmable Cyclic Redundancy Check (CRC)

30.7.3 5-Bit or 7-Bit Polynomials

For 5-bit or 7-bit polynomials, the CRC module will calculate the checksum taking into account
the 5 or 7 Least Significant bits of a byte, respectively. In the case of 5 bits of data, a byte should
contain the 5 bits of data in its 5 Least Significant bits; the Most Significant 3 bits of the byte may
be programmed as zeros. In case of a 7-bit calculation, a byte should contain the 7 bits of data
in its 7 Least Significant bits; the Most Significant bit of a byte may be programmed as zero. Refer
to Section 30.5.2.1 “FIFO to CRC Calculator” for more details.

After forming the bytes from a message stream, the same steps as explained in Section 30.7.2
“8-Bit Polynomial” can be applied. For the polynomial length (PLEN3:PLENO), use values of 04h
or 06h for 5-bit and 7-bit polynomials, respectively. A suitable 5-bit or 7-bit generator polynomial
may be programmed in the CRCXOR register.

30.7.4 16-Bit Polynomials

The recommended procedure to calculate a CRC with a 16-bit polynomial is as follows:

1. Program PLEN3:PLENO bits (CRCCON<3:0>) = OFh.

2. Program a value to CRCXOR (e.g., CRCXOR = 8005h).

3. Program a value in CRCWDAT:

* 0000h (for the start of a new calculation), or
* the previously calculated partial result (for part of the whole message stream).

4. Ifthe CRCFUL bit is not set and if all the data words of the message stream are not written
into the FIFO, then write a data word to the CRCDAT register.

5. If the CRCFUL bit is not set and if all the data words of the message stream are already
written into the FIFO, then write a word of 0000h in CRCDAT and set a software flag in the
application using the CRC (i.e., FINAL CALCULATION).

6. If the CRCFUL bit or the software FINAL CALCULATION flag is set, then start CRC by
setting the CRCGO bit.

7. When CRCMPT is set, then clear the CRCGO bit and read the result byte from the
CRCWDAT register.

8. Forapartial result (CRC calculation is done but the FINAL CALCULATION flag is not set),
pass the partial result to the next calculation process.

Note: If the length of the polynomial is 16 bits, the CRC module expects an integer multiple
of 16 bits in the FIFO

X
D
o
C q
’\a
o3
53
oc
(@]
-
D
(2]
3

© 2006 Microchip Technology Inc. Advance Information DS39714A-page 30-11

PIC24F Family Reference Manual

A word write is a simple process for a 16-bit polynomial. However, in some applications, byte
write operations may be used with 16-bit polynomials (e.g. in UART transmission/reception). In
these applications, an odd number of bytes may need to be padded up with an extra dummy byte.
A dummy byte should not be added if the message stream contains an even number of bytes. In
this case, the procedure explained above for 16-bit polynomials may need to be modified as
follows:

1. Program PLEN3:PLENO bits (CRCCON<3:0>) = OFh.
2. Program a value to CRCXOR (e.g., CRCXOR = 8005h).
3. Program a value in CRCWDAT:
¢ 0000h (for the start of a new calculation), or
¢ The previously calculated partial result (for part of the whole message stream).
4. Ifthe CRCFUL bit is not set, and if all the data bytes of the message stream are not written

into the FIFO, then write a data byte to the CRCDAT register and increment a counter to
keep track of the number of bytes written to the FIFO.

5. If the CRCFUL bit is not set, and if all the data bytes of the message stream are already
written into the FIFO which are odd, then write a byte of 00h (dummy byte) to CRCDAT
and set a software flag in the software application (i.e., MESSAGE_OVER).

6. If the CRCFUL bit is not set and if all the data bytes of the message stream are already
written into the FIFO which are even, then set a software flag (MESSAGE_OVER).

7. If the CRCFUL bit is not set and if the MESSAGE_OVER flag is set, write a word of 0000h
to CRCDAT and set a software flag (i.e., FINAL CALCULATION).

8. If the CRCFUL bit or the FINAL CALCULATION flag is set, start CRC by setting the
CRCGO bit.

9. When CRCMPT is set, clear the CRCGO bit and read the result byte from the CRCWDAT
register.

10. For a partial result (CRC calculation is done but the FINAL CALCULATION flag is not set),
pass the partial result to the next calculation process.

30.7.5 10-Bit or 12-Bit Polynomial

For 10-bit or 12-bit polynomials, the CRC module calculates the checksums by taking into
account the 10 or 12 Least Significant bits of a word, respectively. For 10 bits of data, the Most
Significant 6 bits of a word may be programmed as zero. For 12-bit calculation, the Most
Significant 4 bits of a word may be programmed as zero. Refer to Section 30.5.2.1 “FIFO to
CRC Calculator” for more details.

After forming the words with 10 or 12 bits of actual data and the rest as don’t care bits, the same
steps as explained in Section 30.7.4 “16-Bit Polynomials” can be applied. For the
PLEN3:PLENO bits, use a value of 09h or 0Bh for 10-bit or 12-bit polynomials, respectively. A
suitable generator polynomial of the same length may be programmed in the CRCXOR register.

30.8 OPERATION IN POWER SAVE MODES

30.8.1 Sleep Mode

If Sleep mode is entered while the module is operating, the module is suspended in its current
state until clock execution resumes.

30.8.2 Idle Mode

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into
the mode.

If CSIDL = 1, the module behaves the same way as it does in Sleep mode; pending interrupt
events will be passed on, even though the module clocks are not available.

DS39714A-page 30-12

Advance Information © 2006 Microchip Technology Inc.

Section 30. Programmable Cyclic Redundancy Check (CRC)

Redundancy Check

(CRC)

‘s|rejop dew Alowsw 21y108ds 10} 10BYS BIBp 90IASP BU} O} 19jol 8ses|ld :| 910N

"a|npow QYO ajqewweiBoid ay} jo uonesado ayy ul pasn jou ale sjiq papeys .0, se peal ‘pajuswejdwiun = — :puabaT
(V7444 — — — — odid3iN | kdIF3N | edid3in — 0dld3en | kdid3en | edid3en — 0dI0dO 1dIOHO | 2dI0dO — 910dI
0000 — 33N | 3Jid3en 31040 - - - - - - - - - - - - O3l
0000 — dig3n | dig3en 41040 - - - - - - - - - - - - ys4l
0000 ovlvas | vLvds | ¢vlvds | €vivdas | vvivds | Svivds | 9vivds | Zvivds | 8VivdS | 6VLvds | 0ivlivds | HVLVAS | 2ivlvas | €ivivas | ¥ivlvas | sivivas | Lvamodo
0000 oviva Lvivd cviva eviva yviva Svlva 9viva Lv1iva 8vlva 6viva olviva HViva civlva | €iviva | viviva | siviva 1vaddo
0000 — X (9.4 eX 12:4)¢ IX X 8X 6X 01X 154 c¢kX €IX 71X SIX HOX0dO
0%700 ON31d IN31d ¢N31d ENI1d 09040 — 1dINOYHD | TN4OHD | 0AHOMA | LAHOMA | 2QHOMA | EGHOMA | YGQHdOMA | 1dISO — - NODOJHO

sjasay
v oug L ug clg €1g vug sug 9149 Lyg 8 1g 619 oL g LHug cL g €L g viLug gL ug SweN 34

(1RINPOIN DY 3lqewweiboid aul yum pajeroossy siaisibay uonouny eoads

:¢-0€ 9dlqel

"2-0€ 9|qeL ul papinoid si sinpow DYI ajqewwelbold 41g01d dUl yum pajerdosse siaisibay uonound [e1oads ayi jo Alewwns y

SdVIN H31S1934

6°0€

DS39714A-page 30-13

Advance Information

© 2006 Microchip Technology Inc.

PIC24F Family Reference Manual

30.10 RELATED APPLICATION NOTES

This section lists application notes that are related to this section of the manual. These
application notes may not be written specifically for the PIC24F device family, but the concepts
are pertinent and could be used with modification and possible limitations. The current
application notes related to the programmable CRC are:

Title Application Note #
No related application notes at this time.

Note: Please visit the Microchip web site (www.microchip.com) for additional application
notes and code examples for the PIC24F family of devices.

DS39714A-page 30-14

Advance Information © 2006 Microchip Technology Inc.

http://www.microchip.com
http://www.microchip.com
http://www.microchip.com
http://www.microchip.com

Section 30. Programmable Cyclic Redundancy Check (CRC)

30.11 REVISION HISTORY

Revision A (November 2006)
This is the initial released revision of this document.

X
®
o
€ o
3
o
o
3 g
Q
<
(o)
=3
]
Q
=

© 2006 Microchip Technology Inc. Advance Information DS39714A-page 30-15

PIC24F Family Reference Manual

NOTES:

DS39714A-page 30-16 Advance Information © 2006 Microchip Technology Inc.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

PIC24FJ32GA002-/ML PIC24FJ32GA002-I/SP PIC24FJ32GA002T-I/ML PIC24FJ32GA004-I/ML PIC24FJ32GA004-
I/PT PIC24FJ32GA004T-I/ML PIC24FJ32GAQ04T-I/PT PIC24FJ64GA002-I/ML PIC24FJ64GA002-1/SO
PIC24FJ64GA002-/SP PIC24FJ64GAQ02T-I/ML PIC24FJ64GA002T-/SO PIC24FJ64GA004-I/ML PIC24FJ64GA004-
I/PT PIC24FJ64GA004T-I/ML

http://www.mouser.com/microchip
http://www.mouser.com/access/?pn=PIC24FJ32GA002-I/ML
http://www.mouser.com/access/?pn=PIC24FJ32GA002-I/SP
http://www.mouser.com/access/?pn=PIC24FJ32GA002T-I/ML
http://www.mouser.com/access/?pn=PIC24FJ32GA004-I/ML
http://www.mouser.com/access/?pn=PIC24FJ32GA004-I/PT
http://www.mouser.com/access/?pn=PIC24FJ32GA004-I/PT
http://www.mouser.com/access/?pn=PIC24FJ32GA004T-I/ML
http://www.mouser.com/access/?pn=PIC24FJ32GA004T-I/PT
http://www.mouser.com/access/?pn=PIC24FJ64GA002-I/ML
http://www.mouser.com/access/?pn=PIC24FJ64GA002-I/SO
http://www.mouser.com/access/?pn=PIC24FJ64GA002-I/SP
http://www.mouser.com/access/?pn=PIC24FJ64GA002T-I/ML
http://www.mouser.com/access/?pn=PIC24FJ64GA002T-I/SO
http://www.mouser.com/access/?pn=PIC24FJ64GA004-I/ML
http://www.mouser.com/access/?pn=PIC24FJ64GA004-I/PT
http://www.mouser.com/access/?pn=PIC24FJ64GA004-I/PT
http://www.mouser.com/access/?pn=PIC24FJ64GA004T-I/ML

	Section 30. Programmable Cyclic Redundancy Check (CRC)
	30.1 Introduction
	Equation 30-1:

	30.2 Module Overview
	Figure 30-1: Simplified Block Diagram of the Programmable CRC Generator

	30.3 CRC Registers
	Register 30-1: CRCCON: CRC Control Register�
	Register 30-2: CRCXOR: CRC XOR Register�

	30.4 CRC Engine
	30.4.1 Generic CRC Engine
	Figure 30-2: Generic CRC Calculator Details

	30.4.2 Software Configuration of the CRC Engine
	Equation 30-2:
	Table 30-1: Example CRC Setup
	Figure 30-3: CRC Generator Reconfigured for x16 + x12 + x5 + 1

	30.5 Control Logic
	30.5.1 FIFO
	30.5.2 CRC Engine Interface
	30.5.3 Interrupt Operation

	30.6 Advantages of Programmable CRC Module
	30.7 Application of CRC Module
	30.7.1 Variations
	30.7.2 8-Bit Polynomial
	30.7.3 5-Bit or 7-Bit Polynomials
	30.7.4 16-Bit Polynomials
	30.7.5 10-Bit or 12-Bit Polynomial

	30.8 Operation in Power Save Modes
	30.8.1 Sleep Mode
	30.8.2 Idle Mode

	30.9 Register Maps
	30.10 Related Application Notes
	30.11 Revision History

